
CTN01 00176 163601

TRIM
Tecnologia e Ricerca Industriale per la Mobilità Marina

Efficient discretisation techniques for numerical
simulation of flows in maritime problems

Sotto-Progetto Efficienza

Obiettivo Realizzativo Sviluppo software innovativi

Descrizione attività Costruzione interfaccia CAD
Sviluppo codice BEM isogeometrico
Sviluppo codice bifase isogeometrico
Sviluppo metodi a base ridotta

Tipo di documento Rapporto Tecnico

Codice del documento SP.4-OR.9-D.1

Data di emissione 30/09/2021

Redazione
Andrea Mola, Marco Tezzele,
Gianluigi Rozza



Titolo documento Efficient discretisation techniques for numeri-
cal simulation of flows in maritime problems

Codice documento SP.4-OR.9-D.1

Distribuzione Pubblico

Rev. Data Pagine Redazione Responsabile

0 30/09/2021 2+47 Andrea Mola, Marco Tezzele,
Gianluigi Rozza

Gianluigi Rozza

L’attività descritta nella presente pubblicazione è stata finanziata dal Progetto TRIM
— Tecnologia e Ricerca Industriale per la Mobilità Marina — coordinato dal Consiglio
Nazionale delle Ricerche e finanziato dal Ministero dell’Università e della Ricerca
nell’ambito dell’iniziativa dei Cluster Tecnologici Nazionali.



Contents

Summary 2

1 CAD Interface 3

1.1 Fundamental geometric primitives . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Statement of primitives . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Implementing primitives based on projections onto CAD
geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Extending boundary representations into volumes . . . . . . . . . . . . . 10

1.3 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Surface meshes described by CAD geometries . . . . . . . . . . . 13

1.3.2 Refinement strategy based on local maximum curvature . . . . . 15

2 CAD geometry aware BEM solver for free surface flows 17

2.1 Fully nonlinear potential model . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Three dimensional hull rigid motions . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Linear momentum conservation . . . . . . . . . . . . . . . . . . . 18

2.2.2 Angular momentum conservation . . . . . . . . . . . . . . . . . . 19

2.2.3 Rotation matrix and hull quaternions . . . . . . . . . . . . . . . 19

2.3 Discretization and numerical solution . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Boundary integral formulation . . . . . . . . . . . . . . . . . . . 20

2.3.2 Iso-parametric spatial discretization . . . . . . . . . . . . . . . . 22

2.3.3 Collocation boundary element method . . . . . . . . . . . . . . . 22

2.3.4 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.5 Treatment of CAD surfaces and fully automated mesh generation 24

2.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Model order reduction application 33

3.1 Estimation of the resistance of a hull advancing in calm water . . . . . . 33

3.2 Shape parametrization through free form deformation . . . . . . . . . . 34

3.3 System evolution reconstruction with dynamic mode decomposition . . . 36

3.4 Parameter space verification and reduction by active subspaces . . . . . 38

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References 43

SP.4-OR.9-D.1 Pag. 1/47



Summary

In this report we present the state of the art of efficient discretisation techniques suited
for fluid flows in maritime problems.

We focus on boundary element method properly fitted into an iso-geometric setting,
as well as on a multiphase flow solver fitting the same iso-geometric setting.

A further effort is devoted to the development of model order reduction methods for
efficient simulation and computational cost saving.

Test cases are analysed to highlight the efficiency of the proposed developments in a
naval engineering framework. A strategic importance is given to iso-geometric setting
to be able to incorporate CAD geometries in an efficient way in the full computational
pipeline.

SP.4-OR.9-D.1 Pag. 2/47



1 CAD Interface

The traditional workflow of finite element, finite volume, and finite difference simula-
tions of physical processes consists of three phases: what is called “preprocessing”; the
actual numerical solution of a partial differential equation; and what is called “postpro-
cessing”. In this workflow, preprocessing generally means the generation of a geometric
description of the domain on which one wants to solve the problem — either through
the use of Computer Aided Design (CAD), or by combining simpler geometries into
one via constructive solid geometry (CSG) — and the use of a mesh generator that
uses the geometry to create the computational grid on which the simulation is then
run. On the other end of the pipeline, postprocessing consists of the visualization of
the computed solution and the extraction of quantities of interest.

Overall, this “traditional” workflow can be visualized through the following graph in
which information is only propagated from one box to the next:

Geometry description Mesh generation Simulation Visualization

Quantities of interest

The fundamental issue with this workflow is that geometry information is only passed
on to the mesh generator, but is, in general, not available at the later stages of the
pipeline. This approach — which to our knowledge is used in all commercial and open
source simulation tools today — is appropriate if the simulator is relatively simple;
specifically, if (i) simulation and postprocessing tools only rely on a single, fixed mesh
as their sole information on the geometry of the domain on which to solve the prob-
lem under consideration, and (ii) if one uses lowest-order finite-element, finite-volume,
or finite-difference discretizations for which it is sufficient to use the piecewise linear
approximation of the boundary that is generally obtained by replacing the “underly-
ing” geometry of the problem by a fixed mesh characterized solely by its vertices and
assuming straight edges. In practice, the limitations of the workflow mentioned above
imply that to most finite element analysts, “the mesh is the domain”, even though
to the designer the mesh is generally an imperfect approximation of some underlying
geometry typically understood to be a CAD or CSG description.

Yet, simulation tools have become vastly more complex since the formulation of the
workflow above several decades ago, and as we will show below, we can not make
use of their full potential unless geometry information is propagated to the simulation
and analysis tools, as well as to the postprocessing tools. For example, geometry
information is important in the following contexts:

� Modern simulators no longer use only a single mesh, but create hierarchies of
meshes. Two typical applications are the generation of a sequence of refined
meshes to enable the use of geometric multigrid solvers or preconditioners [1, 2];
and the use of adaptive mesh refinement to obtain a mesh that is better suited to
the accurate solution of the underlying equation [3, 4], without a-priori knowledge

SP.4-OR.9-D.1 Pag. 3/47



of how the final mesh will look like. In a similar vein, for large-scale computations
with more than a few tens of millions of elements and massively parallel systems,
the I/O related to creating and accessing the mesh data structure is often a
serious bottleneck. Much better performance can be obtained by reading smaller
meshes that get refined as part of the simulation. In all of these cases, refining
the mesh involves the computation of new grid points from inside the simulation,
and these points need to respect the same geometry used for the original mesh.

� Accurate simulators use curved cells and higher order mappings both at the
boundary and in the interior of the mesh. How exactly these curved cells should
look requires information about the underlying geometry. To illustrate the im-
portance of this point, let us mention that it has been understood theoretically
for a long time that one loses the optimal order of finite element discretizations
with polynomial degrees greater than one, if one does not also use higher-order
approximations of the boundary [5, 6, 7, 8, 9, 10, 11]. This is also known from
practical experience; for example [12] presents experimental evidence, and [13]
and the references therein provide an excellent example of the lengths one needs
to go to to recover higher-order accuracy if the underlying geometry is not avail-
able (Figure 3 below also illustrate the issue). In other words, a finite element
solver that does not know about the underlying geometry will compute a solution
with an unnecessarily large error or use an unnecessarily large amount of com-
putational work. Alternatively, additional points for a high-order representation
need to be computed as a separate workflow step between the meshing and the
simulation, as used, e.g., in [14, 15, 16].

� In many contexts — during the simulation, but also during accurate visualization
and evaluation of quantities of interest — it is important to know the correct
normal vector to faces of cells. An approximation can be obtained by simply
taking the location of vertices as provided in the mesh file and their connection
into cells, as the ground truth. But the vectors so computed are not consistent
with the true, underlying geometry from which the mesh was originally generated.
As a consequence, visualizations are often not faithful representations of the
actual computations, and quantities of interest are not evaluated to the full
accuracy possible. For example, accurate evaluation of mass or energy fluxes
across a boundary requires accurate knowledge of the normal vector. For fourth
order equations, accurate knowledge of the normal vector may also be required
to retain optimal convergence order of finite element schemes if it is necessary
to construct C1 approximations of a curved boundary (see [6] and the references
therein).

We will provide more examples below where geometry information is used in finite
element simulations.

These considerations point to a need to propagate geometry information not only to
the mesh generator, but indeed also to the simulation engine. This raises the question
how this can best be done. To the best of our knowledge, no commercial or open
source tools do this in a consistent way today. Furthermore, we have to realize that

SP.4-OR.9-D.1 Pag. 4/47



geometries are often described through complex CAD systems that are either not open
source, complicated to interact with, or can only be accessed in proprietary ways; as a
consequence, it makes sense to ask what kinds of queries a generic geometry engine has
to be able to answer to satisfy the needs of simulation software. In order to address all
of these points, we have undertaken a comprehensive study with the following goals:

1. Identify a minimal set of operations — which we will call “primitives” — that
geometry tools need to be able to perform to satisfy the needs of simulation tools.

2. Provide a comprehensive review of geometry operations performed in a widely
used finite element library and a large application code that is built on the
former, with the aim of verifying that the minimal set of operations outlined
above is indeed sufficient.

3. Discuss ways in which geometry tools can implement the minimal set of opera-
tions, given the kinds of geometries and information that is typically available in
industrial and research workflows.

We will state the primitives in the form of oracles, i.e., as blackboxes that given certain
inputs produce appropriate outputs, without specifying how exactly one would need to
implement this operation. This reductionist approach is often appropriate when one
wants to interface with one of many possible geometry engines, each of which may have
its own way of implementing the operations. In such cases, it is often useful to only
specify a minimal interface that all engines can relatively easily implement. A common
way of representing oracles in object-oriented codes is by providing an abstract base
class with unimplemented virtual functions; the base class is then the oracle, whereas
derived classes provide actual implementations.

The result of our work is the realization that only two geometry primitives are sufficient.
We will discuss these in Section 1.1. Section 1.1.2 is then devoted to the question of
how one would implement these two operations in the most common situation in which
the geometry is described implicitly through a collection of NURBS patches in typical
CAD engines. We demonstrate the practical benefits of the integration of geometry
and simulation in Section 1.3.

The practical implication of our work is the identification of a minimal interface that
allows the coupling of geometry and simulation engines. We have tested these interfaces
via the widely used finite element software deal.II [17, 18] and the Advanced Simulator
for Problems in Earth ConvecTion Aspect [19, 20] with geometry descriptions that
are either given explicitly, or via the OpenCASCADE library that is widely used for
CAD descriptions [21]. All of the results of our work are available in the publicly
released versions of deal.II and Aspect. The verification of our approach using
these examples, and the fact that the sufficient interface is so small, should provide
the certainty necessary to follow a similar path for integrating other simulation and
geometry software packages.

We end this introduction by remarking that one may also wish to provide geometry
information to the postprocessing stage. For example, this would allow visualization

SP.4-OR.9-D.1 Pag. 5/47



software to produce more faithful graphical representations of the solutions generated
by simulators, free of artifacts that result from incomplete knowledge of the domain
on which the simulation was performed. We are not experts in visualization and
consequently leave an investigation of the geometry needs of visualization software to
others. We will, however, comment that the evaluation of quantities of interest — such
as stresses at individual points, heat and mass fluxes across boundaries, or average and
extremal values for certain solution fields — may be most efficiently done from within
the simulator itself, given that geometry information as well as knowledge of shape
functions and other details of the discretization are already available there; indeed,
this is the approach chosen in the Aspect code mentioned above.

1.1 Fundamental geometric primitives

As we will discuss in detail in the following section, it turns out that the geometric
queries needed by finite element codes — such as finding locations for new vertices upon
mesh refinement, or computing vectors normal to the surface — can be reduced to only
two “primitive” operations: (i) finding a new point given a set of existing points with
corresponding weights, and (ii) computing the tangent vector to a line connecting two
existing points. This realization of a minimal set of operations allows us great flexibility
in choosing software packages that actually provide these primitives, and minimizes
the dependency a finite element code incurs when using an external geometry package.

In the literature, implementations that can answer a small number of very specific
questions — i.e., provide certain simple operations — are typically referred to as
“oracles”. The point of postulating the existence of an oracle is that it allows us to
separate the design of a code from its actual implementation. In the current case,
all that matters for the purposes of the current section is that an oracle exists that
can answer two specific questions, and whose answers can be used throughout a finite
element code.

In order to motivate the two geometric primitives that we postulate are sufficient for
almost all finite element operations, let us first provide two scenarios of relevance to
us. First, consider a d-dimensional surface embedded into a higher dimensional space;
one might think of this surface as the boundary of a volume within which we would like
to simulate certain physics. The second setting is a d-dimensional volume geometry in
d-dimensional space for which we would like to consider interior cells to also deviate
from the simplest, d-linear shape; an example would be a volume mesh that extends
away from a curved wing around which we would like to simulate air flow. We will use
these two scenarios for the examples below.

1.1.1 Statement of primitives

Given this background, the two operations we have found are necessary are the follow-
ing:

Primitive 1 (“New point”) Given N ≥ 2 existing points x1, . . . ,xN and weights

SP.4-OR.9-D.1 Pag. 6/47



w1, . . . , wN that satisfy
∑N

n=1wn = 1, return a new point x∗(x1, . . . ,xN , w1, . . . , wN )
that interpolates the given points, weighting each xn with wn.

Primitive 2 (“Tangent vector”) Given two existing points x1,x2, return the (non-
normalized) “tangent” vector t at point x1 in direction x2, defined by

t(x1,x2) = lim
w→0

x∗(x1,x2, (1− w), w)− x1

w
. (1)

We will give many examples below of how these two operations are used. As we will
show, all other geometric questions a typical finite element code may have can be
answered exactly, without approximation, with only these two operations. For the
moment, one can think of use cases as follows:

� When adaptively refining a mesh, one needs to introduce new vertex locations
on edges, faces, and in the interior of cells. This is easily done using the first of
the two primitives above, using the existing vertex locations on an edge, face, or
cell as input.

� Computing the normal vector to a face at the boundary of a three-dimensional
domain can be done by taking the cross product of two tangent vectors that pass
through the point at which we need the normal vector. These tangent vectors
are computed via the second primitive.

A concrete implementation that describes a particular geometry will be able to provide
answers to the two operations based on its knowledge of the actual geometry. For
example, and as discussed in Section 1.1.2, the wing of an airplane would be described
using a CAD geometry that can be queried for the primitives above at least on the
boundary of the domain. More work — also described in Section 1.2 below — will
then be necessary to extend this description into the interior. In other cases, however,
the description of the geometry may be available everywhere — for example, if the
geometry of interest is an analytically known object such as a sphere.

Remark 1 As we will see below, the operations that finite element codes require can
be implemented by only querying information from objects that describe an entire man-
ifold, without having to know anything about the triangulation that lives on it, or in
particular where the triangulation’s boundary lies. This greatly simplifies the construc-
tion of oracles because they do not need to know anything about meshes, or the domain
on which we solve an equation. For example, we will be able to use a CAD geometry
of, say, the entire hull of a ship even if we want to solve an equation on only parts of
the surface; that there is a boundary to the domain on which we solve, and where on
the hull it lies, will be of no importance to the oracle that will answer our queries.

Information about the domain, its boundary, and the mesh that covers it, will of course
be used in constructing the inputs to the queries, but is not necessary in computing their
outputs.

SP.4-OR.9-D.1 Pag. 7/47



Remark 2 Given the definition of the tangent vector in (1), it is possible to implement
this second query approximately through finite differencing with the help of the first,
using

t ≈ x∗(x1,x2, (1− ε), ε)− x1

ε

with a small but finite ε. In other words, one could in principle get away with only
one primitive if necessary. At the same time, and as discussed in Section 1.1.2, we
have found that in many cases, good ways to directly implement the tangent vector
primitive exist, and there is no need for approximation.

Remark 3 The two primitives mentioned above are the only ones necessary to imple-
ment the operations discussed in the next section, exactly and without approximation.
As such, they are truly primitive, but that does not mean that one could not come up
with a larger set of operations geometry packages could provide, possibly in a more
efficient way than when implemented based on the primitives. We did not pursue this
idea any further, primarily because (i) we have not found it necessary in practice, and
(ii) because these additional operations would have to be implemented for all of the
different ways discussed in Section 1.1.2.

1.1.2 Implementing primitives based on projections onto CAD
geometries

For CAD geometries, any two points may fall across two different (non-overlapping)
NURBS patches Uα and Uβ. But there are more difficulties that make it difficult to
implement the primitives based on pull back/push forward approaches:

1. NURBS patches do not always satisfy the requirements of a chart in the topo-
logical sense, i.e., they may be non-invertible in some points, and they may be
non-smooth (i.e., contain corners and edges within a single Uα).

2. The metric ϕα that results from mapping u-v space to a NURBS patch Uα may
be ill-formed: Its derivative may be close to zero near some points, and large at
others — equally spaced points in u-v space (or points x∗(x1,x2;w1, (1−w1)) for
equally spaced values of w1) would then be mapped to highly unevenly spaced
points.

3. The evaluation of the pull-back ϕ−1
α (x) is computationally very expensive for

NURBS patches.

As a consequence, useful implementations of our primitives will not be based on the
concepts of differential geometry, but will rather be projection-based. Indeed, a possible
implementation of the new point primitive for (multi-patch) CAD-based geometries
is provided by the following algorithm: Given x1, . . . ,xN , w1, . . . , wN , N ≥ 2, define

x∗ (x1,x2, . . . ,xN , w1, w2, . . . , wN ) = PCAD

(
N∑

n=1

wnxn

)
,

SP.4-OR.9-D.1 Pag. 8/47



Figure 1: Comparison of three different implementations of the new point primitive for
CAD geometries. The red end points (coarse vertices) of the blue line (coarse cell) form the
inputs x1,x2 for which we want to use the new point primitive to find a new mid-point (i.e.,
w1 = w2 = 1

2 ). The blue point is the average of the original vertices to be projected onto the
curved geometry. Left: Projection normal to the geometry. Center: Projection in a direction
chosen a priori. Right: Projection normal to coarse mesh.

where PCAD(x) is a projection of the point x onto the CAD surface (or curve). We will
discuss various choices for the projection operator PCAD below, given that the choice
will influence the quality of the result. We note that projection-based strategies have
been proposed in [22] and are used in a basic variant for a high-order finite element
code in [15]. Many CAD programs, and specifically the OpenCASCADE library [21]
that we use for the examples shown here, implement all of the operations necessary
for the three approaches to implementing a projection discussed below.

Projection in a fixed direction The cheapest way to compute a projection is if
the direction of the projection d ∈ Rd is known a priori — for example, because we
know that the surface in question has only minor variation from being horizontal. In
that case, one might choose

x∗ (x1,x2, . . . ,xN , w1, w2, . . . , wN ) = ICAD

(
N∑

n=1

wnxn,d

)
,

where ICAD(x,d) is the intersection of the line s(t) = x+ sd and the CAD surface (or
curve). In other words, we first average all points xi and then move the average back
onto the surface along direction d.

Projections taking into account the normal vector In more general situations,
however, choosing a projection direction a priori is not possible. Rather, one needs to
take into account the geometry of the CAD surface in the vicinity of the point to be
projected, for example by considering the normal vectors to either the existing mesh,
or to the surface.

The first of these options (shown in the right panel of 1) would use the following
implementation:

x∗ (x1,x2, . . . ,xN , w1, w2, . . . , wN ) = ICAD

(
N∑

n=1

wnxn,n

)
,

SP.4-OR.9-D.1 Pag. 9/47



where the direction n is now (an approximation) to the normal vector of the area
identified by the points xn. n is clearly defined if one only has d input points in d
dimensional space; if there are more points — e.g., the four vertices of a face of a
hexahedron in 3d — then one will want to define some useful approximate vector, e.g.,
the vector normal to the least squares plane that approximates the point locations.
As is clear from the figure, if this implementation is chosen for mesh refinement, one
generally ends up with refined meshes with cells of rather uniform sizes.

To use this approach, one needs to have at least d input points in d dimensions in
order to define a unique direction normal to the existing points. But we also need to
be able to use the new point primitive when finding a new midpoint for an edge in
3d. Thus, we need an additional condition to identify a unique direction among all of
those perpendicular to the line connecting the existing edge end points. We do this by
averaging the CAD surface normal at the vertices of the edge (both of which we know
are on the surface), and then projecting it onto the edge’s axial plane.

An alternative, often implemented in CAD tools but expensive to evaluate, is to use
a direction vector n that is perpendicular to the actual geometry, rather than to the
current mesh. This is shown in the left panel of Figure 1 and may lead to child cells
of different size. Ultimately, however, once the mesh is already a good approximation
to a surface, both of the approaches mentioned here will yield very similar results.

Implementing the tangent vector primitive for CAD surfaces In all three of
the project-based cases above, the implementation of the tangent vector primitive
may be constructed using a finite differences approximation as already mentioned in
Remark 2. A more accurate approach pushes forward the tangent vector at the pulled-
back point.

1.2 Extending boundary representations into volumes

The previous sections only dealt with finding points and tangent vectors on a lower-
dimensional surface, given points already on that surface. On the other hand, finite
element codes typically use volume meshes for which the CAD geometry only provides
information about the boundary. Thus, one still needs a way to extend this information
into the interior of the domain — the importance of this step is apparent by looking
at Figure 2.

A general mechanism for this task is based on transfinite interpolation [23]. A trans-
finite interpolation maps points from some reference space x̂ ∈ K̂ = [0, 1]d to points
in real space x by a weighted sum of information on the geometry of the faces of the
image of K̂. For example, for a quadrilateral in two dimensions

x(x̂1, x̂2) = (1− x̂2)c0(x̂1) + x̂2c1(x̂1) + (1− x̂1)c2(x̂2) + x̂1c3(x̂2)

− [(1− x̂1)(1− x̂2)x0 + x̂1(1− x̂2)x1 + (1− x̂1)x̂2x2 + x̂1x̂2x3] .

Here, c0(s), c1(s), c2(s), c3(s) are the four parameterized curves describing the geom-
etry of the edges of the deformed quadrilateral and x0,x1,x2,x3 are the four ver-

SP.4-OR.9-D.1 Pag. 10/47



tices. The evaluation on each edge is done via the new point primitive x∗, i.e.,
c0(s) = x∗(x0,x1, 1 − s, s) and similarly for the other curves. If an edge is straight,
then c0(s) = (1− s)x0 + sx1. Similar formulas extend to the three-dimensional case.
The important point is that transfinite mappings exactly respect the geometry of the
boundary, while extending it smoothly into the interior of the domain.

We visualize this approach using higher order mappings. We recall that finite element
error estimates on curved cells depend on the product of a Sobolev norm of higher
order derivatives of FK times a norm of the derivatives of F−1

K (see, e.g., [24] or [25,
Sec. 3.3]), which we visualize by the ratio between the largest and smallest singular
value of JK . Figure 3 compares the singular values for two variants of computing the
interior points from the surrounding 11 points per line, i.e., a mapping of polynomial
degree 10, on a quarter of an annulus with inner and outer radii 0.5 and 1, respectively.
If the weights for the interior points are derived from solving a Laplace equation in
the reference coordinates, the representations becomes distored, as is visible from the
point distributions. This leads to a ratio of up to 100 between the largest and smallest
singular value of the Jacobian JK = ∇̂FK(x̂), and theory suggests a break-down of
convergence; in experiments, L2 errors of the solution to the Laplacian converge at
best at third order. Conversely, using weights from transfinite interpolation results in
a minimal singular value of 0.5 throughout the whole domain in this example. The
resulting point distribution with transfinite interpolation in this particular example
is equivalent to an explicit polar description of the whole domain, but applicable to
generic situations with optimal convergence if the coarse cells are valid. We note that
these and similar concepts are established in high-order meshing, but with algorithms
typically acting on the points of associated polynomial descriptions, see e.g. [26, 14,
27, 28, 29, 15, 13] and references therein, rather than the abstract definition used here.

We associate the transfinite interpolation with the initial (“coarse”) mesh of a finite
element computation: each coarse mesh cell is used to define the reference coordinate
system x̂, and this is kept fixed even after many generations of descendants. Interior
edges between refined cells are then curved, ensuring high mesh quality, assuming that
the initial coarse cells reasonably approximate the geometry. Some of the computations
involved in this process can be expensive, and we have therefore implemented caches
that mitigate the cost for the case of polynomial mappings.

1.3 Application examples

In the following, let us illustrate the ideas of the previous sections using concrete
applications. In particular, we will show how the implementation of the two primitives
affects the meshes one obtains for an industrial application (Section 1.3.1) and an
example of how one can choose metrics to generate graded meshes. In addition, let
us refer to Figure 2 for an illustration of the transfinite interpolation approach for
extending surface descriptions to volume interiors.

SP.4-OR.9-D.1 Pag. 11/47



Figure 2: Illustration of the importance of taking geometry into account when refining meshes.
Starting from a discretization of an annulus that contains ten coarse cells, we choose new points
either ignoring the geometry description, i.e., computing the location of a new vertex by simply
averaging the locations of the surrounding points (left), or choosing new points on boundary
edges so that they have the correct radius from the origin, and new points of interior edges and
cells as the Cartesian mean of the surrounding vertices (second from left). The latter procedure
works well when the number of coarse elements is sufficient to resolve the geometry, but leaves
some kinks in the grids, where one is still able to identify the original ten coarse cells. However,
it may lead to very distorted grids if the coarse mesh is not fine enough, e.g., if the coarse mesh
consisted of only four cells (second from right). The ideal case (right) is independent of the
number of coarse cells that one may start with, and it exploits full knowledge of the underlying
geometry. In this case, this is done by choosing all new points on edges and cells so that they
average the radius and angle of the adjacent points.

Figure 3: Illustration of the two singular values of JK = ∇̂FK(x̂) for a quarter of a two-
dimensional annulus; here, FK is a polynomial mapping of a single element of degree 10. The
ratio of the largest over the smallest singular value appears in the interpolation error estimate of
the Bramble–Hilbert lemma, and consequently also in all error estimates for partial differential
equations. Left two panels: Maximal and minimal singular value for point placement based on
Laplace smoothing. Right two panels: Maximal and minimal singular value for point placement
using a transfinite interpolation (see the main text for interpretation). The figures also include
the positions of 112 points equidistantly placed onto the reference cell and then mapped by
FK to the cell K shown here, to illustrate the distortion.

SP.4-OR.9-D.1 Pag. 12/47



1.3.1 Surface meshes described by CAD geometries

As discussed in detail in previous sections, CAD surfaces consist of patches that are the
images of simpler domains in a two-dimensional u-v space. Let us first consider a case
where the geometry is described by a single, albeit rather complex, patch. The issue in
even this simplified case is that a patch can be parameterized in many different ways,
not all of which imply a more or less constant metric. Thus, it is unwise — although
very common — to generate a mesh in u-v space to obtain the corresponding three-
dimensional surface grid, even though this of course has the advantage of generating
nodes directly on the desired surface. Yet, the resulting mesh will generally have cells
of rather unequal sizes and may show other severe deformations.

To illustrate how our approach can be used to generate better meshes, we will use an
industrial application that involves meshing a single parametric patch describing the
bow portion of one side of the DTMB 5415 ship hull, containing also a sonar dome. The
presence of several convex and concave high curvature regions makes such a geometry
a particularly meaningful example.

Figures 4–6 show results for this model geometry with the three projection strategies.

Figure 4: Directional projection strategy with a horizontal direction of projection perpendicular
to the axis of symmetry. The first two rows show side views of the coarse grid and grids obtained
from five successive refinements. The last row shows a front view of the same grids shown in
the second row. This strategy produces uniformly distributed cells away from areas where the
projection direction is close to the tangent to the shape (namely, at the bottom of the shape
as well as the front of the bulb).

The directional projection strategy with a horizontal direction of projection (Figure 4)
generally produces high quality meshes except in those places where the geometry is
tangent to the projection direction — i.e., in particular at the front of the bulb as well

SP.4-OR.9-D.1 Pag. 13/47



Figure 5: Normal to mesh projection strategy. If the geometry does not intersect the direction
normal to the existing points, then the closest point on the shape to the original point —
typically lying on the shape boundary — is selected. Panels as in Figure 4. This strategy
produces uniformly distributed cells in all cases.

Figure 6: Normal to surface projection strategy. In cases where more than one surface normal
projection is available, the closest of them is selected. If the shape is composed by several
sub-shapes, the projection is carried out onto every sub-shape and the closest projection point
is selected. Panels as in Figure 4. This strategy is unable to produce well-shaped cells in areas
of large curvature.

SP.4-OR.9-D.1 Pag. 14/47



as the bottom. In contrast, using the direction normal to the existing points (Figure 5)
generates high quality meshes everywhere. Finally, the option to use a surface normal
instead of a mesh normal vector (Figure 6) is not only expensive to compute, but here
yields meshes that are grossly distorted wherever the geometry has large curvature (i.e.,
around the bulb); this might also have been expected from the left panel of Figure 1
that shows a similar effect.

1.3.2 Refinement strategy based on local maximum curvature

The case of multi-patch geometries is more complicated as small gaps or superimpo-
sitions are typically present between neighboring patches. Meshes directly generated
from this parameterization will therefore often not be “water-tight”. On the other
hand, one can generate a coarse mesh by hand or by software that simply starts with a
few points on the surface that are then connected to cells without taking into account
the subdivision into patches; such a mesh can then be refined hierarchically to obtain
a mesh of sufficient density.

In the following, let us show how we can use the results of the previous section towards
building meshes for an entire ship hull; we will also show how additional information
can be extracted from CAD tools to drive the refinement strategy on CAD based
geometries. To this end, Figure 7 depicts a CAD model of a Kriso KCS ship hull
— a common benchmark for CFD applications of naval architecture [30]. In this
production-like CAD model the patches are not connected in a water-tight fashion
and the surface parametrization is not continuous at patch junctions. These defects
prevent most mesh generators from obtaining a closed grid.

Figure 7: Overall (left) and bow (right) view of the CAD model of a ship hull. The model is
composed of approximately 120 parametric patches, delimited by black lines.

We start from a minimal initial surface grid composed of about 40 cells (top panel
of Figure 8) and refine it a number of times using the strategy where we project
in a direction normal to the existing points. Refinement of the initial grid starts
with an anisotropic refinement step in which cells with an aspect ratio larger then
a threshold λmax are cut along their most elongated direction. We then refine the
resulting quadrilateral mesh adaptively, using an estimate of the local curvature of the
CAD surface as a criterion. This estimate is obtained exploiting a technique essentially
identical to the one used in the “Kelly” error estimator [31, 32]. Elements in areas
with higher curvature will have larger jumps of the (cell) normal vectors across cell
boundaries. The bottom panel of Figure 8 shows the final grid generated.

SP.4-OR.9-D.1 Pag. 15/47



Figure 8: Initial (top) and final (bottom) surface grids on the Kriso KCS hull, with 40 and˜
11,500 quadrilateral cells, respectively.

Despite the fact that the original CAD surface is composed of several unconnected
parametric patches, the projection procedure is able to find, for each of the grid nodes,
the best projection among those obtained onto individual patches. As a result, the final
mesh is water-tight, and independent of the CAD surface parameterization and patch
distribution. In addition, the adopted refinement strategy distributes a larger number
of new nodes in high curvature regions, ensuring a uniform quality of approximation
of the geometry. We show this in more detail in Figure 9, illustrating the bow and
stern portions of the final grid. Finally, it is worth pointing out that for the generation
of the grids portrayed in Figure 8 and Figure 9, no smoothing stage was carried out
in between refinements to enhance mesh quality. Yet, the projection in a direction
normal to the existing points allows for retaining the quality of the original coarse grid
across more than 10 levels of refinement without any additional adjustment.

Figure 9: Bow (left) and stern (right) details of the adaptively refined surface grid on the
Kriso KCS hull from Figures 7 and 8. The adaptive refinement strategy results in finer cells
in high curvature regions, ensuring uniform approximation of the geometry. In addition, the
grid is independent of the non-sharp edges separating the 120 parametric patches composing
the underlying CAD model. In the final mesh, hanging nodes are placed on the underlying
geometry, leading to a non-watertight mesh. However, these artifacts are easily removed by
enforcing continuity of the geometry.

SP.4-OR.9-D.1 Pag. 16/47



2 CAD geometry aware BEM solver for free surface
flows

2.1 Fully nonlinear potential model

In this work, we are only considering the motion of a ship advancing at constant speed
in calm water. Thus, we choose to solve the problem in a global, steadily translating
reference frame X̂Y Z, which is moving according to the constant horizontal velocity
of the boat V ∞ = (V∞, 0, 0). Thus, the X axis of the reference frame is aligned with
V ∞, the Z axis is directed vertically (positive upwards), while the Y axis is directed
laterally (positive port side).

Under the assumptions of irrotational flow, inviscid fluid, and simply connected domain
Ω, the velocity field v(X, t) admits a representation through a scalar potential function
Φ(X, t), namely

v = ∇Φ = V ∞ ·X + ϕ ∀ X ∈ Ω(t), (2)

in which ϕ(X, t) is the so called perturbation potential. In such case, the equations of
motion simplify to the unsteady Bernoulli equation and to the Laplace equation for
the perturbation potential:

∂ϕ

∂t
+

1

2
|∇ϕ+ V ∞|2 + p− pa

ρ
− g ·X = C(t) in Ω(t) (3a)

∆ϕ = 0 in Ω(t) (3b)

where C(t) is an arbitrary function of time, and g = (0, 0,−g), is the gravity acceler-
ation vector, directed along the z coordinate axis. In this framework, the unknowns
of the problem ϕ and p are uncoupled, and it’s possible to recover the pressure by
postprocessing the solution of the Poisson problem (3b) via Bernoulli’s equation (3a).
Thus, the governing equation of our model is the Laplace equation. Such equation is
complemented by non penetration boundary conditions on the hull surface Γb(t) and
on the bottom of the basin Γbot(t), and by homogeneous Neumann boundary condi-
tions on the truncation boundaries Γfar(t) of the numerical domain. On the water
free surface Γw(t), we employ the kinematic and dynamic fully nonlinear boundary
conditions expressed in semi-Lagrangian form, which respectively read

δη

δt
=

∂ϕ

∂z
+∇η · (w −∇ϕ− V ∞) in Γw(t) (4)

δϕ

δt
= −gη + 1

2
|∇ϕ|2 +∇ϕ · (w −∇ϕ− V ∞) in Γw(t). (5)

The former equation expresses the fact that a material point moving on the free surface
will stay on the free surface — here assumed to be the graph of a single valued function
η(X,Y, t) of the horizontal components X and Y of the position vector x. The latter

SP.4-OR.9-D.1 Pag. 17/47



condition represents a manipulation of Bernoulli’s equation (3a), under the assumption
of constant atmospheric pressure on the water surface. This peculiar form of the fully
nonlinear boundary conditions was proposed by Beck [33]. Equation (4) allows for the
computation of the vertical velocity of markers which move on the water free surface
with a prescribed horizontal speed (wX , wY ). Equation (5) is used to obtain the
velocity potential values in correspondence with such markers. The resulting vector
w = (wX , wY ,

δη
δt ) = Ẋ is the time derivative of the position of the free surface

markers. In this work, such free surface markers are chosen as the free surface nodes
of the computational grid. To avoid an undesirable mesh nodes drift along the water
stream, the markers arbitrary horizontal velocity is set to 0 along the X direction. The
Y component of the water nodes in contact with the ship — which is moved according
with the computed linear and angular displacements — is chosen so as to keep such
nodes on the hull surface. As for the remaining water nodes, the lateral velocity value
is set to preserve mesh quality.

2.2 Three dimensional hull rigid motions

In this work, the ship hull is assumed to be a rigid body. To study its motions,
we employ a second, hull-attached reference frame x̂yz, which follows the hull in its
translations and rotations. The center of such reference frame will be located in cor-
respondence with the ship center of gravity, which in the global reference frame reads
XG(t) = XG(t)eX +Y G(t)eY +ZG(t)eZ , where eX , eY , eZ are the unit vectors along
the global system axes.

The rotation matrix R(t) is used to pass from the coordinates of a point x written in
the hull-attached reference frame, to those in the global frame X, namely

X(t) = R(t)x+XG(t). (6)

The global frame velocity of a point having coordinates x in the hull-attached frame
is obtained as

V hp(t) = ω(t)× x+ Ẋ
G
(t), (7)

where ω is the angular velocity vector, the components of which specify the rotational
speed of the hull about the global frame axes X, Y and Z respectively.

Equations (6) and (7) imply that once XG(t), R(t), and ω(t) are known at time t,
the position and velocity of each point of the hull can be computed. For this reason,
writing the time evolution equations for each of such quantities will be sufficient in
order to determine the hull dynamics. In the next sections, we will present the evolution
equations used in this work.

2.2.1 Linear momentum conservation

The evolution equation for XG(t) is obtained via the linear momentum conservation
equation, which in the case of our hydrodynamics simulation framework reads

SP.4-OR.9-D.1 Pag. 18/47



msẌ
G
(t) = msg + Fw(t). (8)

In Equation (8), ms is the mass of the ship, while the hydrodynamic force vector
Fw(t) is in principle obtained as the sum of the pressure and viscous forces on the
hull, propeller and appendages.

2.2.2 Angular momentum conservation

The evolution equation for ω is obtained writing the angular momentum conservation,
namely

R(t)IGR(t)T ω̇(t) + ω(t)×R(t)IGR(t)Tω(t) = Mw(t), (9)

where IG is the matrix of inertia of the ship in the hull-attached reference frame, and
hydrodynamic moment vector Mw(t) is the sum of the moment about the ship center
of gravity of the pressure and viscous forces on hull, propeller and appendages.

2.2.3 Rotation matrix and hull quaternions

To write an evolution equation for R, we first the introduce the angular velocity tensor
associated to ω, namely

ω(t) =

 0 −ωZ(t) ωY (t)
ωZ(t) 0 −ωX(t)
−ωY (t) ωX(t) 0

 . (10)

Note that tensor ω(t) will act on a vector u ∈ R3 as if the ω× operator were applied
to v:

ω × u = ωu. (11)

Making use of such tensor, an evolution equation for the rotation matrix R reads

Ṙ = ωR, (12)

which can be advanced in time to obtain the components of R and close the equations
of motions of a rigid body in three dimension. Yet, in common the practice of rigid
body simulations, direct numerical integration of Equation (12) is avoided. The most
important reason for this, is related to numerical drift. If we in fact keep track of the
orientation of a rigid body integrating Equation (12), numerical error will build up in
the entries of R(t), so that it will no longer be a rotation matrix, losing its properties
of orthogonality and of having determinant equal to 1. Physically, the effect would be
that applying R(t) to a body would cause a skewing effect.

SP.4-OR.9-D.1 Pag. 19/47



A better way to represent the orientation of a rigid body in three dimensions (even with
large rotations) is represented by the use of unit quaternions (see Shoemake [34]). For
our purposes, quaternions can be considered as a particular type of four element vector,
normalized to unit length. If we indicate the quaternion q = s+ vXeX + vY eY + vZeZ
as [s,v], the internal product of two quaternions q1 and q2 is defined as

q1q2 = [s1,v1] [s2,v2] = [s1s2 − v1 · v2 , s1v2 + s2v1 + v1 × v2] . (13)

The norm of a quaternion q is defined as ||q|| =
√
s2 + v2X + v2Y + v2Z . Unit quaternions

can be used to represent rotations in a three dimensional space. In fact, given a
quaternion q : ||q|| = 1, we can obtain the corresponding rotation matrix as

R =

 1− 2v2Y − 2v2Z 2vXvY − 2svZ 2vXvZ + 2svY
2vXvY + 2svZ 1− 2v2Y − 2v2Z 2vY vZ − 2svX
2vXvZ − 2svY 2vY vZ + 2svX 1− 2v2Y − 2v2Z

 . (14)

Finally, the equation needed to describe the time evolution for the hull quaternion q(t)
is

q̇(t) =
1

2
Ω(t)q(t), (15)

where Ω(t) = [0,ω(t)] is the quaternion associated with the angular velocity vector
ω(t). As quaternions only have four entries, there only is one extra variable used to
describe the three degrees freedoms of a three dimensional rotation. A rotation ma-
trix instead employs nine parameters for the same three degrees of freedom; thus, the
quaternions present far less redundancy than rotation matrices. Consequently, quater-
nions experience far less numerical drift than rotation matrices. The only possible
source of drift in a quaternion occurs when the quaternion has lost its unit magni-
tude. This can be easily corrected by periodically renormalizing the quaternion to
unit length.

2.3 Discretization and numerical solution

In this section, we will briefly describe the spatial discretization method based on the
boundary integral formulation of the Laplace equation. In addition, we will present
the Differential Algebraic Equation system coupling the fluid dynamics and hull rigid
motions equations, and discuss its solution strategy.

2.3.1 Boundary integral formulation

While Equation (3) is time dependent and defined in the entire domain Ω(t), we are
really only interested in its solution on its boundary Γ(t), in particular on the unknown

SP.4-OR.9-D.1 Pag. 20/47



free surface part of the boundary, and on the ship hull Γb(t), where we would like to
recover the pressure distribution by postprocessing Bernoulli’s equation (3a).

At any time instant t we want to compute ϕ satisfying

−∆ϕ = 0 in Ω(t) (16a)

ϕ = ϕ on Γw(t) (16b)

ϕn =
(
V hp − V ∞

)
· n on Γb(t) (16c)

ϕn = 0 on Γbot(t) (16d)

ϕn = 0 on Γfar(t) (16e)

(16f)

where ϕ is the potential on the free surface at the time t. This is a purely spatial
boundary value problem, in which time appears only through boundary conditions
and through the shape of the time dependent domain.The solution of problem (16) is
then used to evaluate the right hand side of Equation (4) and Equation (5), which are
integrated over time to obtain the new position of the free surface markers and the
corresponding potential field values.

We call G the free space Green’s function, i.e., the function

G(r) =
1

4π|r|
,

which is the distributional solution of

−∆G(X −X0) = δ(X0) in R3

lim
|X|→∞

G(X −X0) = 0, (17)

where δ(X0) is the Dirac distribution centered in X0.

If we select X0 to be in Ω(t), multiply the Laplace equation by G, and use the defining
property of the Dirac delta and the second Green identity, we obtain

ϕ(X0, t) =

∫
Ω(t)

[− (∆G(X −X0))ϕ(X, t)] dΩ =∫
Γ(t)

[(∇ϕ(X, t) · n)G(X −X0)− (∇G(X −X0) · n)ϕ(X, t)] dΓ.

In the limit for X0 touching the boundary Γ(t), the integral on the right hand side will
have a singular argument, and should be evaluated according to the Cauchy principal
value. This process yields the so called Boundary Integral Equation (BIE)

αϕ =

∫
Γ(t)

[
ϕnG− ∂G

∂n
ϕ

]
dΓ on Γ(t), (18)

SP.4-OR.9-D.1 Pag. 21/47



where α(X, t) is the fraction of solid angle 4π with which the domain Ω(t) is seen from
X.

With Equation (18), the continuity equation has been reformulated as a boundary
integral equation of mixed type defined on the moving boundary Γ(t), where the main
ingredients are the perturbation potential ϕ(X, t) and its normal derivative ϕn(X, t).

2.3.2 Iso-parametric spatial discretization

The spatial discretization of the Laplace problem, has been carried out making use of
the classes of the C++ open source library for finite elements implementation deal.II
(Bangerth et al. [35, 36]). A detailed description of how such classes are employed
for the implementation of the present Boundary Element Method can be found in
Mola et al. [37]. In such framework, we approximate the geometry of the domain
boundary by means of bilinear quadrilateral panels. We define the Lagrangian shape
functions Nl(u, v) l = 1, . . . , 4 on the reference panel, which allow us to introduce a
local parametrization of the k-th panel as

Xk(u, v, t) :=
4∑

l=1

Xkl(t)Nl(u, v) u, v ∈ [0, 1]2, (19)

where the weights are the positions of the nodes in the current domain Γh(t), and kl
is the local to global numbering index which identifies the 4 basis functions φkl which
are different from zero on the k-th panel.

The global basis functions φi(X) can be identified and evaluated on each panel K via
their local parametrization as

φi
k(u, v) := φi(Xk(u, v)) =

4∑
l=1

δi klNl(u, v), δij =

{
1 if i = j

0 otherwise.
(20)

At this point, a local representation of ϕ(Xk(u, v, t), t) and of its normal derivative on
the k-th panel are available as

ϕk(u, v, t) =
4∑

l=1

ϕkl(t)Nl(u, v) ϕnk(u, v, t) =

4∑
l=1

ϕn
kl(t)Nl(u, v),

where ϕkl , ϕn
kl l = 1, . . . , 4 are the nodal values of the potential and of its normal

derivative in panel k.

2.3.3 Collocation boundary element method

With the iso-parametric representation, we write the boundary integral equation for
each support point Xi, i = 1, . . . , NV , and finally recast the discrete version of the
boundary integral equation as

SP.4-OR.9-D.1 Pag. 22/47



[α] {ϕ}+ [N ] {ϕ} = [D] {ϕn} (21)

where we have used the following notation

� {ϕ} and {ϕn} are the vectors containing the potential and its normal derivative
node values, respectively;

� [α] is a diagonal matrix composed by the α(Xi(t)) coefficients;

� [D] and [N ] are the Dirichlet and Neumann matrices respectively whose elements
are

Dij =
M∑
k=1

∫
K̂
G(Xi(t)−Xk(u, v, t))φj

k(u, v)J
k(u, v, t) dudv (22)

Nij =

M∑
k=1

∫
K̂

∂G

∂n
(Xi(t)−X(u, v, t))φj

k(u, v)J
k(u, v, t) dudv, (23)

Jk(u, v, t) being the determinant of the first fundamental form on the k-th of the M
panels composing the computational grid.

The numerical evaluation of the panel integrals appearing in Equations (22) and (23)
needs some special treatment, due to the presence of the singular kernels G(Y −X)
and ∂G

∂n (Y − X). Whenever y is not a node of the integration panel, the integral
argument is not singular, and standard Gauss quadrature formulas can be used. If y is
a node of the integration panel, the integral kernel is singular and special quadrature
rules are used, which remove the singularity by performing an additional change of
variables (see, for example, Lachat and Watson [38]).

2.3.4 Time discretization

The time dependent boundary value problem composed by Laplace equation and by the
kinematic and dynamic boundary condition, along with the hull rigid motion equations
can be recast in the following form

F (t, y, y′) = 0, (24)

where we grouped the variables of the system in the vector y:

y =



{X}
{ϕ}
{ϕn}{
Ẋ

G
}{

XG
}

{ω}
{q}


. (25)

SP.4-OR.9-D.1 Pag. 23/47



Here, {X}, {ϕ} and {ϕn} represent the vectors containing nodal coordinates, potential

and potential normal gradient values respectively;
{
Ẋ

G
}

and
{
XG

}
are the hull

baricenter velocity and position vector respectively; finally {ω} and {q} are the hull
angular velocity and quaternion vector. Note that the three second order differential
equations for the hull baricenter coordinates

{
XG

}
have been here recast into a set of

six first order differential equations.

Equation (24) represents a system of nonlinear differential algebraic equations (DAE),
which we solve using the IDA package of the SUNDIALS OpenSource library (Hind-
marsh et al. [39]). The integration of such DAE system is performed through a variable-
order, variable-coefficient BDF (backward difference formula), which reads

q∑
i=0

αn,iyn−i = hnẏn, (26)

where yn and ẏn are the computed approximations to y(tn) and y′(tn), respectively,
and the step size is hn = tn − tn−1. The coefficients αn,i are uniquely determined by
the order q, and the history of the step sizes. The application of the BDF scheme to
the DAE system results, at each time step, in a nonlinear algebraic system, solved by
means of Newton iteration.

2.3.5 Treatment of CAD surfaces and fully automated mesh generation

In a typical Computer-Aided Design (CAD) model, several parametric surfaces are
patched together to compose the whole ship surface. At the industrial level, there is
no requirement that such patches are logically connected one to each other, nor that
the full hull surface is or even continuous. Most of CAD shapes indeed present several
small gaps or overlaps between each surface composing them. A small tolerance can in
fact be set during the CAD model generation, to control the dimension of such imper-
fections in a way that makes them negligible once the actual hull is crafted. Yet, the
presence of disconnected and overlapping patches impairs in most cases the generation
of computational grids for fluid mechanics simulations purposes. Most solvers for fluid
dynamics equations require in fact the generation of a three dimensional grid in the
volume of fluid surrounding the hull surface. Such domain is in most cases obtained via
boolean subtraction of the hull volume from a large box of fluid surrounding it. Clearly,
in presence of gaps and overlaps between the hull surface patches, both delimiting the
hull volume and using it to perform boolean operations is extremely difficult. One of
the most important advantages of the Boundary Integral Formulation adopted, is that
only the boundary of the three dimensional domain needs to be discretized. Thus, the
reduced complexity of the superficial computational grids needed has been exploited in
this work to achieve full automation of the mesh generation process, regardless of the
number of number of surfaces composing the hull model, and the continuity of their
connections. In this work, we made use of the Open CASCADE Community Edi-
tion (OCE) open source library to import and interrogate CAD models in the mesh
generation module of the BEM solver developed. While building the grid, a certain

SP.4-OR.9-D.1 Pag. 24/47



number of fundamental geometric functions are in fact needed to properly place the
newly created nodes on the hull surface and on its edges. To this end, we implemented
a series of wrappers that use the OCE functions to provide the mesh handler with the
geometrical tools needed. A grid composed of a very small number of quadrilaterals
is initially generated. The points are placed at strategic locations on the hull intersec-
tions with its symmetry plane and with the undisturbed free surface. At this stage,
the hull is discretized only in two cells per each side.

Figure 10: The very first grid created using the points of intersection between the undisturbed
free surface and the CAD model of the hull. The domain extends for 18× Lpp in longitudinal
direction, 4× Lpp in lateral direction and 2× Lpp in vertical direction.

Figure 10 shows a view of the initial mesh. Starting from such initial mesh, the cells
are hierarchically refined to improve the level of approximation of the original CAD
geometry. The new nodes are generated onto the quadrilateral cells composing the
grid, and then projected on the hull surface making use of a set of surface projectors
implemented through OCE (see Mola et al. [40] and Dassi et al. [41] for a more detailed
description). To generate the grid, initial cycles of uniform refinement are followed by
a final number of local adaptive refinement cycles based on an error estimator repre-
sented by the distance between the center cell and its projection on the boat surface.
Finally, during the simulation at fixed intervals in time, the simulation is stopped and
the surface gradient of the finite element approximation of η is post-processed. This
provides a quantitative estimate of the cells in which the approximation error may be
higher. In particular, for each cell K of our triangulation we compute the quantity

τ2K :=
h

24

∫
∂K

[∇sη · n∂K ]2 dγ, (27)

where [∇sη · n∂K ] denotes denotes the jump of the surface gradient of η across the
edges of the grid element K. The vector n∂K is perpendicular to both the cell normal
n and to the boundary of the element K, and h is the diameter of the cell itself.

SP.4-OR.9-D.1 Pag. 25/47



By a practical standpoint, τK represents an estimate of the jumps of gradients across
the edges of each quadrilateral cell. The higher these values are, the smaller the cells
should become. The a posteriori error estimator described is a modification of the
gradient recovery error estimator by Kelly et al. [31] and Gago et al. [32]. Its choice
was mostly motivated by its simplicity.

The vector containing the cell error estimates τK is ordered, and a fixed fraction of
the cells with the highest and lowest errors are flagged for refinement and coarsening.
The computational grid is then refined, ensuring that any two neighboring cells differ
for at most one refinement level. Standard interpolation is used to transfer all finite
dimensional solutions from one grid to another. The resulting computational grid
is non conformal. At each hanging node, all the dimensional fields computed are
constrained to be continuous. This results in a set of algebraic constraints which are
introduced into the DAE system in correspondence with all the degrees of freedom
associated with the hanging nodes.

Figure 11: The final, adapted mesh at the end of the simulation of the flow past the DTMB 5415
hull.

Figure 11 shows the final mesh for the simulation of the flow past the DTMB 5415 hull.
As can be appreciated, the adaptation algorithm is able to place the vast majority of the
free surface cells in correspondence with the featherlets of the Kelvin wake detaching
from the hull. Thus, despite being composed by only 4700 nodes, the grid is able
to cover the most physically meaningful portions of the flow domain with sufficiently
small elements.

Finally, at each time step of the simulation, the current angular and linear displace-
ments are applied to the CAD hull geometry to place it in the proper position. After
this, all the water nodes in contact with the ship are projected onto the displaced
surface, so that the lateral velocity required to keep such nodes on the water surface
can be computed from the distance between the original and projected points.

SP.4-OR.9-D.1 Pag. 26/47



2.4 Numerical experiments

The first test case selected for the validation of the FSI solver described, is that of
a DTMB 5415 hull advancing at constant speed in calm water. For such naval com-
batant geometry, Olivieri et al. [42] carried out an extensive experimental campaign
at Istituto Nazionale per Studi ed Esperienze di Architettura Navale (INSEAN), the
biggest Italian ship model basin. In the tests, a DTMB 5415 hull model with dis-
placement ∆ = 0.549 t and length between perpendiculars Lpp = 5.72m, free to sink
and trim, has been towed at speeds ranging from 0.3m/s to 3.3m/s. For each towing
velocity V∞, the hydrodynamic equilibrium values of sink, trim angle and total drag
were recorded. Additional wave pattern and wake velocity measurements were carried
out at the velocity corresponding to the Froude number Fr = V∞/

√
gLpp = 0.28.

Given such quantity of experimental data available, the DTMB 5415 hull is a popular
benchmark for the validation of CFD models and software. For this reason, the CAD
file describing its geometry is available in the literature. In this work, we assumed
that the orientation of the hull in such CAD description is the one corresponding with
the hydrostatic equilibrium. Thus, the horizontal position of the hull center of mass
has been assumed to coincide with that of the hydrostatic pressure center. The verti-
cal position of the hull center of mass — for which no information has been found in
Olivieri et al. [42] — is assumed to coincide with the undisturbed water level.

To reproduce the experimental setup, we carried out a series of FSI simulations in
which the DTMB 5415 model hull was impulsively set in motion at speed V∞. To this
end, the only component of the translational motion considered was the vertical one.
For this reason, the hydrodynamic force vector Fw appearing in Equation (8) has been
computed as

Fw =

(∫
Γb

pn dΓ · eZ
)
eZ , (28)

so that only the vertical component of the pressure forces will affect the hull motion.
Since we only focused on the pitch motion, only the Y component of the pressure forces
moment about the ship center of gravity was considered. Thus, the hydrodynamic
moment in Equation (9) reads

Mw =

(∫
Γb

(x× pn) , dΓ · eY
)
eY , (29)

For each speed tested, the simulation continued until the hydrodynamic equilibrium
position was reached, and the equilibrium values of sink, trim angle and total resistance
were recorded. Figure 12 displays the time history of the trim angle θ for the simulation
corresponding to Re = 0.28. For reference, the green line in the plot represents the
equilibrium value of θ, computed as the trim angle average value in the last 20 s of the
simulations.

Several FSI simulations were executed, imposing cruise velocities V∞ which correspond
to Froude numbers ranging between 0.15 and 0.4. At the current time, the parallel

SP.4-OR.9-D.1 Pag. 27/47



Figure 12: Trim angle θ of the DTMB 5415 hull impulsively started at Fr = 0.28, as a function
of the simulation time t. The red line represents the time history of the trim angle. The green
line displays the final, steady state value, computed as the average angle in the last 20 s of the
simulation.

version of the solver is still under development. Thus, the simulations presented in this
work were executed on a serial Intel Xeon E5530, 2.40GHz processor taking about 20
hours to reach convergence.

2.5 Results and Discussion

A quality assessment for the water elevation predictions of the unsteady fully non-
linear potential model developed is presented in Figure 13. The plot represents the
nondimensional elevation η/Lpp of the points of the water surface in contact with
the DTMB 5415 hull advancing at Fr = 0.28, as a function of the nondimensional
longitudinal coordinate x/x/Lpp. The colored continuous curves in the plot indicate
experimental results obtained by different research groups and presented in Olivieri
et al. [42]. The blue asterisks refer instead to the values computed in the present
work. By a qualitative standpoint, the numerical results appear in good agreement
with the measurements, as the shape of the computed water elevation curve is close
to the experimental ones. By a quantitative standpoint, it can be noticed that the
longitudinal position of the bow and stern wave crests is reproduced accurately in the

SP.4-OR.9-D.1 Pag. 28/47



simulations. The same can be said for the position of the steep trough following the
bow wave, located at x/Lpp = 0.17 and for the position of the milder second trough,
located in the region around x/Lpp = 0.65. As for the wave amplitudes, the predicted
wave elevation curve is falling among the experimental ones for most of the hull length.
Only in the bow wave region, the water height prediction appears slightly lower then
the measured value. This could be related to some numerical dissipation depending
on an under refined grid. Further investigations will be carried out to confirm this
deduction.

Figure 13: Nondimensionalized wave elevation profile on the surface of the DTMB 5415 hul at
Fr = 0.28, as a function of the nondimensional longitudinal coordinate. The colored continuous
lines represent experimental values obtained by three different groups and reported by Olivieri
et al. [42]. The blue asterisks refer to the predictions of the model presented in this work.

Figure 14 shows the comparison between experimental and predicted values for the
DTMB 5415 hull hydrodynamic equilibrium sink sz/Lpp, as a function of the Froude
number Fr = V∞/

√
gLpp. The blue continuous curve refers to experimental data pre-

sented in Olivieri et al. [42], while the red dashed line represents the predictions of the
FSI model presented in this work. Again, the qualitative behavior of the numerical
results is similar to that of the experimental data. Yet, it can be noticed that the
predicted values, especially at low Froude numbers, are consistently lower then the
corresponding experimental results. This is likely related to the hydrostatic compo-
nent of the pressure forces. In fact, even in hydrostatic conditions, the ship surface
approximated through the surface mesh is associated to a lower immersed volume with

SP.4-OR.9-D.1 Pag. 29/47



respect to the actual hull. Hence, the discretized ship in the simulation will settle at
lower sink values to compensate for the missing buoyancy force. With the grids used
for the present simulations, this effect accounts for a 2.5mm sink value at Fr = 0,
which is compatible with the offset observed in the left portion of Figure 14. At higher
Froude numbers, the hydrodynamic component of the pressure forces becomes higher,
and the predicted curve approaches the experimental one. A possible way to reduce
this source of error is resorting to iso-geometric discretization techniques, either for the
whole BEM solver, or more simply to carry out the pressure integrals on the actual
hull surface. This possible improvement to the solver will be investigated in the near
future.

Figure 14: Nondimensional sink as a function of the Froude number for the DTMB 5415 hull.
The blue continuous line represents the experimental values presented in Olivieri et al. [42].
The values obtained in this work are represented by the red dashed line.

The plot presented in Fig 15 represents the hydrodynamic equilibrium pitch angle
value for the DTMB 5415 hull, as a function of the Froude number. Also in this
case, the blue continuous curve refers to the experimental data presented in Olivieri
et al. [42], while the red dashed line represents the results obtained in this work. The
plot suggests that the model proposed is able to reproduce the qualitative behavior
of the DTMB 5415 experimental trim angle curve. For low Froude numbers, the hull
presents a positive pitch, while at higher speeds the trim angle progressively becomes
negative. The values predicted with the FSI model proposed reproduce with sufficient
accuracy both the location (Fr = 0.28) and the value (θ = 0.0019 rad) of the maximum

SP.4-OR.9-D.1 Pag. 30/47



of the trim angle curve. Also the predicted location (Fr = 0.377) of the curve zero falls
rather close to the experimental value of (Fr = 0.367). On the right portion of the plot,
corresponding to highest speed range tested, the computed trim angles appear to over
predict the experimental values. This could have several explanations. On one hand,
it might be related to a different vertical location of the hull baricenter, with respect
to the experiments. At high speeds, when the pressure at the bulbous bow stagnation
point becomes significant, it is in fact possible that the horizontal pressure forces in
that region might affect differently the pitch angle, for different vertical distances with
the hull baricenter. Even more importantly, the presence of wave breaking in the
bow region is not represented in the present model, which might explain for the more
trimmed by the stern experimental equilibrium.

Figure 15: Trim angle (in radiants) as a function of the Froude number for the DTMB 5415
hull. The blue continuous line represents the experimental values presented in Olivieri et al [42].
The values obtained in this work are represented by the red dashed line.

Finally, Figure 16 depicts a comparison between experimental and numerical values of
total drag for the DTMB 5415 hull, as a function of the Froude number. Again, the
blue continuous curve refers to the experimental data presented in Olivieri et al. [42],
while the red dashed line represents the numerical results. In this work, the viscous
drag component has been computed by means of the ITTC-57 formula. The plot shows
that the behaviour of the total drag curve predicted with the proposed FSI model is in
close agreement with that of the experimental one. In all the range of velocities tested,
the relative error between experimental and numerical values of total drag is below 9%,

SP.4-OR.9-D.1 Pag. 31/47



while the maximum absolute error is ∼ 7N. The graph also shows that, as the vessel
speed is increased, the FSI model total drag predictions seem to be underestimating
the experimental values. This could be again associated to the growing extent of the
bow breaking wave, which is not reproduced with the fluid dynamic model adopted.

Figure 16: Total resistance of the DTMB 5415 hull as a function of the Froude number. The
blue continuous line represents the experimental values presented in Olivieri et al. [42]. The
values obtained in this work are represented by the red dashed line.

SP.4-OR.9-D.1 Pag. 32/47



3 Model order reduction application

3.1 Estimation of the resistance of a hull advancing in calm water

In this section we introduce the problem of the estimation of the resistance of a
ship advancing in calm water. The hull shape considered in this work is that of the
DTMB 5415, which was conceived for the preliminary design of a US Navy Combatant
ship and includes a sonar dome and a transom stern (see Figure 17). Given the abun-
dance of experimental data available in the literature (among others, we cite Olivieri et
al. [42]) has become a common benchmark for naval hydrodynamics simulation tools.

Figure 17: Reference domain Ω, that is the DTMB 5415 hull.

We denote with Ω ⊂ R3 the domain (see Figure 17) associated with our model hull.
More specifically, Ω is our reference domain, and corresponds with the undeformed
DTMB 5415 hull — the latter assumption is not fundamental for the remainder of the
paper, but is convenient for practical reasons. We must here remark that the domain
considered in the fluid dynamic simulations is in principle the volume of water Ωw

surrounding the hull. Further details about the fluid dynamic domain will be provided
in the following sections.

We define the shape morphing M(x;µ) : R3 → R3 that maps the reference domain
Ω into the deformed domain Ω(µ), namely Ω(µ) = M(Ω;µ). It is quite natural to
infer that the flow field, and thus the result of the fluid dynamic simulations, will
depend on the specific hull shape considered. In turn, such shape is associated to
the parameters defining the morphing M — which will be extensively defined in the
next sections. One of the main purposes of this contribution is then to investigate
the effect of the morphing parameters on the total resistance, the main fluid dynamic
performance parameter. We must here remark that one of the geometrical quantities
having the most effect on the resistance is the immersed volume of a hull shape,
as higher volumes will generate higher drag values. If designers only consider the
absolute resistance value, they might then disregard hull shapes that have relatively
good drag performances despite having higher immersed volume. This is of course
undesired and could be avoided adopting different strategies. A first possibility is
considering a resistance value which is nondimensionalized using a measure of the
displaced volume. In alternative, the morphing parameters could be constrained so
as to impose a fixed hull immersed volume. Unfortunately, the former solution poses
some problem in the identification of the most suitable nondimensionalization strategy
resulting in resistance output indices truly independent of the hull immersed volume.
As for the latter possibility, it would lead to an undesired complication of the shape
parametrization methodology. In this work the effect of immersed volume variations
on the hull resistance is taken into account in a more natural fashion. In the fluid

SP.4-OR.9-D.1 Pag. 33/47



dynamic simulations, the rigid motions of the hull are also considered. In this way,
once the ship displacement is imposed, the hull shape considered in the simulation
reaches the equilibrium position under the action of gravity and hydrodynamic forces.
When a shape morphing is characterized by a higher volume, the computed sink will
reduce to obtain the same vertical component of the hydrodynamic force. This ensures
that each shape is compared on a level ground.

By a practical standpoint, once a point in the parameter domain D is identified, the
specific hull geometry is provided to the fluid dynamic solver, which carries out a
flow simulation to come up with a resistance estimate. In this framework free form
deformation has been employed for the generation of a very large number of hull
geometries based on the DTMB 5415 naval combatant hull shape morphing. Each
geometry generated has been used to set up a high-fidelity hydrodynamic simulation
with the desired ship displacement and hull speed. Since the serial time dependent
high-fidelity simulations are quite time consuming, taking approximatively 24 hours
to reach a steady state solution, we adopted a reduction strategy based on dynamic
mode decomposition (DMD) to cut the overall computational cost of each simulation
to roughly 10 hours. The output resistances for all the configurations tested have
been finally analyzed by means of active subspaces (AS) in order to verify if a further
reduction in the parameter space is feasible, which could significantly speed up the
work of designers.

We refer the interested reader to Mola et al. [37, 40, 43] for further information on
the fully nonlinear potential free surface model, on its application to complex hull
geometries, and on the treatment of the hull rigid motions respectively. In the next
sections, we will provide a brief description of the free form deformation application
to the problem at hand, and describe the dynamic mode decomposition strategy used
to cut the computational time of the simulations. Finally, the active subspaces used
to analyze the resistance dependence on the morphing parameters will be presented.

3.2 Shape parametrization through free form deformation

In this section we will briefly describe how the free form deformation (FFD) shape mor-
phing strategy has been used to produce a parametrised set of modified DTMB 5415
hulls to be used in the fluid dynamic simulations. FFD is a versatile parametrization
technique used for shape optimization in a variety of fields such as aerospace engi-
neering, structural mechanics, and biomedical engineering among others. For further
insight on the original formulation of FFD we suggest to see Sederberg et al [44], while
for a recent work we suggest Salmoiraghi et al [45]. One of the main features of FFD,
is that it does not directly manipulate the geometrical object at hand. Instead it de-
forms a lattice of points built around the object itself, manipulating the whole space
in which the geometry is embedded. This lattice has the topology of a hypercube of
dimension equal to the dimension of the geometry we want to morph (3D in this work).
The lattice is deformed using a trivariate tensor-product of B-spline functions. This
produces a continuous and smooth deformation of the geometry. Such methodology
has been implemented into a stand alone Python package PyGeM, which has been

SP.4-OR.9-D.1 Pag. 34/47



used to obtain the morphed geometries considered in the present work.

Figure 18 displays a detail of the DTMB 5415 sonar dome, surrounded by the points
composing the FFD lattice. FFD is devised to only deform objects which fall within
the FFD lattice, so the picture indicates that in this work we are only modifying the
shape of the DTMB 5415 sonar dome. The green lattice points in the picture are the
ones that have been moved to produce the deformations of domain Ω used in this work.

Figure 18: Control points of the FFD lattice around the bulbous bow. The points which are
displaced to generate the hull deformations are indicated with the green color.

The FFD procedure can be in fact subdivided into three steps. First, the physical
domain Ω is mapped to the reference domain Ω̂ through a map ψ. Then, some control
points (the green ones in the picture, in our case) P of the lattice are moved. Note
that the displacement of such points are the parameters µ that identify a particular
deformed geometry. Once the lattice has been deformed, trivariate tensor-products of
B-spline functions are used to compute the map T̂ that associates the original lattice
to the deformed one. Finally, the back mapping from the deformed reference domain
is applied to the deformed physical domain Ω(µ) using the map ψ−1. So it possible
to express the FFD map M(x;µ) : Ω ⊂ R3 → Ω(µ) ⊂ R3 by the composition of these
three maps, i.e.

M(· ;µ) = (ψ−1 ◦ T̂ ◦ ψ)(· ;µ).

In our case we have chosen µ ∈ D := [−0.3, 0.3]8, that results in a wide range of
different bulbous bow configurations (see Figure 19 for an idea of different possible
deformations). For sake of clarity we underline that the undeformed original domain
is obtained setting all the geometrical parameters to 0. The main purpose of this work
is to carry out a rather wide exploration of the shape parameter space, to assess the
dependence of the output parameters on the shape morphing parameters. That is why
the parameters bounds are chosen so as to be able to obtain somewhat significant —
and yet physically meaningful — deformations of the bow bulb.

SP.4-OR.9-D.1 Pag. 35/47



Figure 19: Two different examples of deformations.

3.3 System evolution reconstruction with dynamic mode
decomposition

As mentioned, the unsteady and nonlinear fluid dynamic model adopted results in
rather expensive simulations. Of course this could in principle reduced through full
parallelization of the software developed which, however, has yet to be carried out.
In this work, the computational cost of each simulation carried out has been reduced
through the first application application of the dynamic mode decomposition (DMD)
to our fully nonlinear potential solver output.

Dynamic mode decomposition (DMD) is a data-driven algorithm that provides a finite
approximation of the infinite dimensional Koopman operator (see Koopman [46]). Pro-
posed in Schmid [47] for fluid dynamics analysis, this technique has become popular in
the last years mainly because (i) it allows to approximate nonlinear dynamics through
low-rank structures that evolve in time and (ii) it relies only on the data, avoiding
assumptions on the underlying system. We have implemented this algorithm, as well
as many of its variants, in an open source Python package on GitHub, called PyDMD
(see Demo et al. [48]). In this section we will introduce the DMD algorithm and we
will discuss the fluid dynamic problem at hand as an example of its application. For
an application of DMD to snapshots obtained from the solution of RANS equations
see Demo et al. [49].

Let the variable xk represent the state of the evolving system at time tk = k∆t.
Basically, we want to find a linear finite dimensional Koopman operator A such that
xk+1 = Axk. In order to build this operator, we collect a series of data vectors
{xi}li=1, which we will refer to as snapshots from now on, and which represent the
time-equispaced system states. We assume all the snapshots have the same dimension,
that is xk ∈ Rn for all k = 1, . . . , l, and we assume the dimension n of a snapshot is
larger that the number of snapshots l, i.e. n > l. We arrange the snapshots in two
matrices, S and Ṡ, as

S =


x11 x12 · · · x1l−1

x21 x22 · · · x2l−1
...

...
. . .

...
xn1 xn2 · · · xnl−1

 , Ṡ =


x12 x13 · · · x1l
x22 x23 · · · x2l
...

...
. . .

...
xn2 xn3 · · · xnl

 (30)

SP.4-OR.9-D.1 Pag. 36/47



Figure 20: A comparison between the original output of the fluid dynamic simulations and the
DMD reconstructed one. The top image represents a contour plot of water X velocity around
a morphing of the DTMB 5415 hull advancing at Fr = 0.28 in calm water. The top half of the
plot depicts the reconstructed fluid velocity, while the bottom half represents the one resulting
from the high-fidelity computation. The bottom image s a front view of a contour plot of the
pressure field on the hull and water surface. In this case, the left part of the plot refers to the
high-fidelity solution, while the right half refers to the reconstructed pressure.

in order to build the linear operator by minimizing ∥Ṡ − AS∥2. We underline that
each column of Ṡ contains the state vector at the next timestep of the one in the
corresponding S column. Hence, the best-fit matrix A is given by A = ṠS†, where
the symbol † denotes the Moore-Penrose pseudo-inverse. Since the snapshots usually
have high dimension for complex systems, the matrix A becomes very large and it is
difficult to manipulate. The DMD algorithm projects the data onto a low-rank sub-
space defined by the Proper Orthogonal Decomposition (POD) modes, then computes
the low-dimensional operator Ã. This operator is used to reconstruct the leading
nonzero eigenvalues and eigenvectors of the full-dimensional operator A without ever
explicitly computing A. Using the truncated singular value decomposition of matrix
S ≈ UrΣrV

∗
r with rank r, we can build the low-rank linear operator as:

Ã = U∗
rAUr = U∗

rṠS
†Ur = U∗

rṠVrΣ
−1
r U∗

rUr = U∗
rṠVrΣ

−1
r . (31)

We can now reconstruct the eigenvectors and eigenvalues of the matrix A using the
eigendecomposition ÃW = WΛ. In detail (see Tu et al. (2014)), the DMD modes Θ
can be computed by projecting the low-rank eigenvectors on the high-dimensional space
Φ = UrW (projected modes) or computing the eigenvectors of A as Θ = ṠVrΣ

−1
r W

(exact modes). Moreover, the eigenvalues of Ã correspond to the nonzero eigenvalues
of A, and they contain the growth/decay rate and the frequencies of the corresponding
modes. Recalling the equations above, we underline that A = ΘΛΘ†. The generic
snapshot xk+1 can be reconstructed by premultiplying the first snapshot k times by
the linear operator, such that xk+1 = Akx1 = (ΘΛΘ† . . .ΘΛΘ†)x1. Hence the state
of the system can be approximated, for any time tk+1 as xk+1 = ΘΛkΘ†x1, where the
vector Θ†x1 is usually called amplitudes.

The application of DMD to the computational fluid dynamics simulations in this work
is carried out collecting the snapshots within the temporal window t = [7 s, 15 s], with
∆t = 0.1 s. As both the motion of the hull and of the free surface nodes are computed in

SP.4-OR.9-D.1 Pag. 37/47



Figure 21: Comparison of high-fidelity (red continuous curve) and DMD reconstructed (blue
continuous curve) total resistance time history. The triangular markers in the plot denote the
times at which the snapshots for the DMD have been stored.

the simulations, the DMD algorithm is educated using snapshot vectors which include
the grid nodes coordinates, along with the flow velocity and pressure. The DMD
algorithm has been used to compute a rather accurate approximation of the whole fluid
dynamic problem solution up to t = 30 s, at the mere cost of a post processing phase
requiring only few seconds. This led to a significant reduction of the computational
cost, dropping the time required for each 30 s simulation from 24 h to 10 h.

Figure 20 compares the high-fidelity fluid dynamic solution at t = 30 s with the one
which has been reconstructed through the described DMD strategy. The figure includes
both pressure and velocity field plots, which have been split in half to give a parallel
view of both the high-fidelity and reconstructed field. Despite the DMD has been
extrapolated from snapshots that are alder than t = 15 s, no difference between original
and reconstructed flow and water elevation fields is appreciable in the contour plots.
Figure 21 represents a comparison of time history of the hull resistance computed
from the high-fidelity and DMD reconstructed hull pressure field. Again, the DMD
approximated time history seems able to reconstruct with good approximation the
high-fidelity values. This is especially true for the last instants of the simulation,
which are used to compute the final value of the total hull resistance, one of the
output parameters considered in this work.

3.4 Parameter space verification and reduction by active subspaces

The active subspaces (AS) property has been brought to attention recently through the
work of P. Constantine [50]. The AS property is a characteristic of the scalar function

SP.4-OR.9-D.1 Pag. 38/47



relating the scalar output to the parameters µ, and of a probability density function
associated to such function. By a qualitative standpoint, AS is typically exploited to
assess whether the parameter space allows for a significant — and of course useful
— dimension reduction. By a quantitative standpoint, it can also be used to assess
the sensitivity of the output with respect to each parameter considered. The main
idea of AS is to operate in the parameters space, rescaling the inputs µ and then
rotating them with respect to the origin. In some cases (see Tezzele et al. [51, 52]),
such procedure reveals in lower dimension behavior of the output function f(µ) (the
total resistance or the hull sink and trim, in our case). We underline that AS does not
identify a subset of the inputs as important, instead it identifies a set of important
directions in the space of all inputs. These directions (which are linear combinations
of the input variables) are the ones along which the output function varies the most
on average. When an active subspace is identified for the problem of interest, it is
possible to perform different parameter studies.

Now we review how it is possible to find active subspaces. Let us assume1 f : Rm → R
is a scalar function and ρ : Rm → R+ a probability density function, where m is the di-
mension of the parameters. Since all the geometrical configurations can be drawn with
equal probability, a uniform probability density will suffice in our case. In particular,
we assume f continuous and differentiable in the support of ρ, with continuous and
square-integrable (with respect to the measure induced by ρ) derivatives. The active
subspaces of the pair (f, ρ) are the eigenspaces of the covariance matrix associated to
the gradients ∇µf . This matrix, denoted by Σ, is the so-called uncentered covari-
ance matrix of the gradients of f (among others see Devore (2015) for a more deep
understanding of these operators). Its elements are the average products of partial
derivatives of f , that is:

Σ = E [∇µf ∇µf
T ] =

∫
D
(∇µf)(∇µf)

Tρ dµ, (32)

where E[·] is the expected value. We use a Monte Carlo method to approximate the
eigenpairs of Σ as in Constantine et al. (2015):

Σ ≈ 1

NAS
train

NAS
train∑
i=1

∇µfi∇µf
T
i , (33)

where we draw NAS
train independent samples µ(i) from the measure ρ, and where we have

∇µfi = ∇µf(µ
(i)). The matrix Σ admits a real eigenvalue decomposition because it

is symmetric positive semidefinite, so we have Σ = WΛWT , where W contains the
eigenvectors and is in O(m), the orthogonal group, while Λ is the diagonal matrix of
non-negative eigenvalues arranged in descending order.

The lower dimensional parameter subspace is formed by selecting the first M < m
eigenvectors. We underline that perturbations in the first set of coordinates change f ,
on average, more than perturbations in the second set of coordinates. We can discard

1In this section we will omit the dependence on µ. It should be understood that f = f(µ), ρ = ρ(µ),
etc.

SP.4-OR.9-D.1 Pag. 39/47



the vectors corresponding to the low eigenvalues since they are in the nullspace of the
covariance matrix. Doing so, we are able to construct an approximation of f . To be
more clear, let us partition Λ and W as follows:

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] ,

where Λ1 = diag(λ1, . . . , λM ), and W1 contains the first M eigenvectors. The active
subspace is the the range of W1. We call inactive subspace the range of the remaining
eigenvectors inW2. The linear combinations of the input parameters with weights from
the important eigenvectors are the active variables. By projecting the full parameter
space onto the active subspace we can approximate the behaviour of f . In particular
we have the following formulas for the active variable µM and the inactive variable η:

µM = WT
1 µ ∈ RM , η = WT

2 µ ∈ Rm−M . (34)

Using Equation (34) and the fact that W ∈ O(m) we can express any point in the
parameter space µ ∈ Rm in terms of µM and η as follows:

µ = WWTµ = W1W
T
1 µ+W2W

T
2 µ = W1µM +W2η.

So it is possible to rewrite f as f(µ) = f(W1µM +W2η), and, using only the active
variables, we can construct a surrogate quantity of interest g, that is f(µ) ≈ g(WT

1 µ) =
g(µM ). In our pipeline, the surrogate quantity of interest g will be obtained by a
response surface method.

3.5 Numerical Results

In this section we present the numerical results obtained by applying all the methodolo-
gies presented above to the DTMB 5415 model hull. The FFD morphing methodology
illustrated has been used to generate 130 different deformations of the original hull.
The parametrised shapes correspond to uniform sampling points in the parameter
space box D = [−0.3, 0.3]8. Each IGES geometry produced has been then used as the
input of a high fidelity simulation in which the hull has been set to advance in calm
water at a constant speed corresponding to Fr = 0.28. Each high fidelity computa-
tion has been carried out to simulate 15 s of the flow past the hull after it has been
impulsively started from rest. Between the 7th and 15th second of the high-fidelity
simulations, the solver saved the full flow field at sampling intervals ∆t = 0.1 s. Such
flow field snapshots have been used to feed the DMD algorithm implemented, and
complete the fluid dynamic simulations until convergence to the regime solution was
reached at t = 30 s. The reconstructed flow fields have been finally used to evaluate
the hull total resistance and the hydrodynamic trim position, which are the output
performance parameters considered in this work. The dataset composed by the output
of the simulations has been divided in a train dataset (75% of the outputs) used to
train the AS algorithm and a test dataset (25% of the outputs) used to validate the
methodology.

SP.4-OR.9-D.1 Pag. 40/47



Figure 22 depicts the eigenvalues estimates of the matrix Σ (black dots and line) and
also displays the bootstrap intervals (corresponding to the grey area surrounding the
eigenvalues lines). In the figure, the left plot is referred to the total resistance, while
the right one is displays the hydrodynamic trim angle.

Figure 22: Eigenvalues estimates of the matrix Σ for the total resistance (on the left) and the
hydrodynamic trim angle (on the right). The black dots in the plot indicate the eigenvalues,
which the grey area is defined by the bootstrap intervals.

The plots indicate that a factor of at least 10 exists between the highest and lowest Σ
eigenvalues. Such difference is clearly more pronounced when the hydrodynamic trim is
the output considered. Yet, the plots also show that the eigenvalues magnitude is rather
evenly distributed across the range they span. More precisely, the absence of a major
gap between the higher module eigenvalues and the lower module ones, is suggesting
that the active subspace is most revealing a clear cut low dimensional behaviour of
the target functions with respect to the active variables, as is the case for different
applications (Tezzele et al. [52]). Yet, especially in the case of the hydrodynamic
trim angle output, the first eigenvalue module is considerably higher than that of the
remaining ones. That is why, for the hydrodynamic trim it was possible to compute
a bivariate surface response using the first two active variables, obtained as linear
combinations of the original parameters with coefficients obtained by the eigenvectors
corresponding to the two highest module eigenvalues. Figure 23 shows the quartic
surface that best approximates the training dataset in the sense of least squares, along
with the points in the test dataset (which are indicated by the dots). Each point
represents the value of the target function f(µ) against the active variables µM =
W T

1 µ ∈ R2. As can be appreciated, the points corresponding to the true output are
not distributed randomly in the space, but tend to be somewhat clustered around
the surface. This is particularly true when the output parameter considered is the
hydrodynamic trim angle (right plot) for which, as we have seen, the Σ eigenvalues
corresponding to the first active variable was significantly higher then the remaining
ones. Thus, whenever the gap between the leading Σ eigenvalues allows for it, the AS
algorithm is able to successfully identify a set active variables upon which the output

SP.4-OR.9-D.1 Pag. 41/47



is — with reasonable approximation — exclusively depending.

Figure 23: Comparison between the quartic surface response obtained with two active variables
and the true output for the test data set, indicated by the dots. The left plot refers to the
total resistance output, while the right one to the hydrodynamic trim angle.

To provide a more quantitative assessment of how much such approximation is in
fact reasonable, and depends on the gap existing between the first Σ eigenvalues and
the following ones, we computed the average error as the average, among 10 different
eigenvalues estimates, of the root mean square error divided by the maximum range
of variation of the target function. As expected, the accuracy of the two dimensional
surface response predictions for the hull total resistance is rather low, and only a
20% average error is obtained, that is about 1.8N. The average error obtained for
the hydrodynamic trim angle output is approximately 11%, that corresponds to an
absolute rmse of 8·10−5, confirming that such output can be better represented through
AS. Thus, for all those applications for which errors of the reported magnitudes are
acceptable — as might be the case for early design stages — AS provides a recipe
to reduce the parameter space from 8 to 2 variables. In addition, the error analysis
provides a further confirmation of the fact that once the eigenvalue analysis is carried
out, the detection of a possible cliff in the eigenvalue curve (see Figure 22) is a measure
of how well AS will perform. So, since the computational cost of the post processing
operations required for the AS algorithm proposed is marginal with respect to that of
the high-fidelity simulations, it should be always worth checking if AS could be used
to obtain a significant drop in the parameter space dimension.

SP.4-OR.9-D.1 Pag. 42/47



References

[1] Briggs W. L., Henson V. E., and McCormick S. F. Multigrid Tutorial. Society of
Industrial and Applied Mathematics, second edition, 2000.

[2] Clevenger T. C., Heister T., Kanschat G., and Kronbichler M. A flexible, parallel,
adaptive geometric multigrid method for FEM. ACM Transactions on Mathemat-
ical Software, 47(1):7:1–27, 2021.

[3] Carey G. F. Computational Grids: Generation, Adaptation and Solution Strate-
gies. Taylor & Francis, 1997.

[4] Bangerth W. and Rannacher R. Adaptive Finite Element Methods for Differential
Equations. Birkhäuser Verlag, 2003.

[5] Ciarlet P. G. and Raviart P.-A. The combined effect of curved boundaries and nu-
merical integration in isoparametric finite element methods. In Aziz A. K., editor,
The Mathematical Foundations of the Finite Element Method with Applications
to Partial Differential Equations, pages 409–474. Academic Press, 1972.

[6] Mansfield L. Approximation of the boundary in the finite element solution of
fourth order problems. SIAM Journal on Numerical Analysis, 15(3):568–579,
1978.

[7] Bassi F. and Rebay S. High-order accurate discontinuous finite element solution
of the 2D Euler equations. Journal of Computational Physics, 138(2):251–285,
1997.

[8] Braess D. Finite Elements. Cambridge University Press, 2007.

[9] Bartels S., Carstensen C., and Dolzmann G. Inhomogeneous Dirichlet conditions
in a priori and a posteriori finite element error analysis. Numerische Mathematik,
99(1):1–24, 2004.

[10] Dörfler W. and Rumpf M. An adaptive strategy for elliptic problems including
a posteriori controlled boundary approximation. Mathematics of Computation,
67(224):1361–1382, 1998.

[11] Bhattacharyya P. K. and Nataraj N. On the combined effect of boundary approx-
imation and numerical integration on mixed finite element solution of 4th order
elliptic problems with variable coefficients. ESAIM: Mathematical Modelling and
Numerical Analysis, 33(4):807–836, 1999.

[12] Hartmann R. Adaptive Finite Element Methods for the Compressible Euler Equa-
tions. PhD thesis, University of Heidelberg, 2002.

[13] Mengaldo G., Moxey D., Turner M., Moura R. C., Jassim A., Taylor M., Peiró
J., and Sherwin S. J. Industry-relevant implicit large-eddy simulation of a high-
performance road car via spectral/hp element methods, 2021. last revised version.

SP.4-OR.9-D.1 Pag. 43/47



[14] Hindenlang F., Bolemann T., and Munz C.-D. Mesh curving techniques for high
order discontinuous Galerkin simulations. In Notes on Numerical Fluid Mechanics
and Multidisciplinary Design, pages 133–152. Springer International Publishing,
2015.

[15] Krais N., Beck A., Bolemann T., Frank H., Flad D., Gassner G., Hindenlang F.,
Hoffmann M., Kuhn T., Sonntag M., and Munz C. FLEXI: A high order discontin-
uous galerkin framework for hyperbolic-parabolic conservation laws. Computers &
Mathematics with Applications, 81:186–219, 2021. Development and Application
of Open-source Software for Problems with Numerical PDEs.

[16] Moxey D., Cantwell C. D., Bao Y., Cassinelli A., Castiglioni G., Chun S., Juda E.,
Kazemi E., Lackhove K., Marcon J., Mengaldo G., Serson D., Turner M., Xu H.,
Peiró J., Kirby R. M., and Sherwin S. J. Nektar++: Enhancing the capability
and application of high-fidelity spectral/hp element methods. Computer Physics
Communications, 249:107110, 2020.

[17] Arndt D., Bangerth W., Davydov D., Heister T., Heltai L., Kronbichler M., Maier
M., Pelteret J.-P., Turcksin B., and Wells D. The deal.II finite element library:
Design, features, and insights. Computers & Mathematics with Applications,
81:407–422, 2021.

[18] Arndt D., Bangerth W., Clevenger T. C., Davydov D., Fehling M., Garcia-Sanchez
D., Harper G., Heister T., Heltai L., Kronbichler M., Kynch R. M., Maier M.,
Pelteret J.-P., Turcksin B., and Wells D. The deal.II library, Version 9.1. Journal
of Numerical Mathematics, 27(4):203–213, 2019.

[19] Kronbichler M., Heister T., and Bangerth W. High accuracy mantle convection
simulation through modern numerical methods. Geophysical Journal Interna-
tional, 191(1):12–29, 2012.

[20] Heister T., Dannberg J., Gassmöller R., and Bangerth W. High accuracy mantle
convection simulation through modern numerical methods – ii: realistic models
and problems. Geophysical Journal International, 210(2):833–851, 2017.

[21] Open Cascade S.A.S. Opencascade Technology, 2010. http://www.opencascade.
org.

[22] Farin G. Curves and surfaces for CAGD: A practical guide. Morgan Kaufmann,
San Francisco, CA, USA, 5th edition, 2002.

[23] Gordon W. J. and Thiel L. C. Transfinite mappings and their application to grid
generation. Applied Mathematics and Computation, 10:171–233, 1982.

[24] Ciarlet P. G. and Raviart P.-A. Interpolation theory over curved elements, with
applications to finite element methods. Computer Methods in Applied Mechanics
and Engineering, 1(2):217–249, 1972.

[25] Strang G. and Fix G. F. An analysis of the finite element method. Wellesley-
Cambridge Press, Wellesley, MA, USA, 1988.

SP.4-OR.9-D.1 Pag. 44/47

http://www.opencascade.org
http://www.opencascade.org


[26] Šoĺın P., Segeth K., and Doležel I. High-order finite element methods. Chaptman
& Hall/CRC, Boca Raton, FL, USA, 2004.

[27] Moxey D., Ekelschot D., Keskin Ü., Sherwin S. J., and Peiró J. High-order curvi-
linear meshing using a thermo-elastic analogy. Computer-Aided Design, 72:130–
139, 2016.

[28] Mittal K. and Fischer P. F. Mesh smoothing for the spectral element method.
Journal of Scientific Computing, 78(2):1152–1173, 2019.

[29] Dobrev V., Knupp P., Kolev T., Mittal K., and Tomov V. The target-matrix opti-
mization paradigm for high-order meshes. SIAM Journal on Scientific Computing,
41(1):B50–B68, 2019.

[30] Kim W. J., Van S. H., and Kim D. H. Measurement of flows around modern
commercial ship models. Experiments in Fluids, 31:567–578, 2001.

[31] Kelly D. W., Gago J. P. de S. R., Zienkiewicz O. C., and Babuška I. A pos-
teriori error analysis and adaptive processes in the finite element method: Part
I–Error analysis. International Journal for Numerical Methods in Engineering,
19(11):1593–1619, 1983.

[32] Gago J. P. de S. R., Kelly D. W., Zienkiewicz O. C., and Babuška I. A pos-
teriori error analysis and adaptive processes in the finite element method: Part
II–Adaptive mesh refinement. International Journal for Numerical Methods in
Engineering, 19(11):1621–1656, 1983.

[33] Beck R. F. Time-domain computations for floating bodies. Applied Ocean Re-
search, 16:267–282, 1994.

[34] Shoemake K. Animating rotation with quaternion curves. ACM SIGGRAPH
Computer Graphics, 19(3):245–254, 1985.

[35] Bangerth W., Hartmann R., and Kanschat G. deal.II – A general-purpose object-
oriented finite element library. ACM Transactions on Mathematical Software,
33(4):24, 2007.

[36] Bangerth W., Davydov D., Heister T., Heltai L., Kanschat G., Kronbichler M.,
Maier M., Turcksin B., and Wells D. The deal.II library, version 8.4. Journal of
Numerical Mathematics, 24(3):135–141, 2016.

[37] Mola A., Heltai L., and De Simone A. A stable and adaptive semi-lagrangian
potential model for unsteady and nonlinear ship-wave interactions. Engineering
Analysis with Boundary Elements, 37(1), 2013.

[38] Lachat J. C. and Watson J. O. Effective numerical treatment of boundary integral
equations: a formulation for three-dimensional elastostatics. International Journal
for Numerical Methods in Engineering, 10(5):991–1005, 1976.

SP.4-OR.9-D.1 Pag. 45/47



[39] Hindmarsh A.C., Brown P.N., Grant K.E., Lee S.L., Serban R., Shumaker D.E.,
and Woodward C.S. SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Transactions on Mathematical Software, 31(3):363–396,
2005.

[40] Mola A., Heltai L., and De Simone A. Potential model for ship hydrodynamics sim-
ulations directly interfaced with CAD data structures. In The 24th International
Ocean and Polar Engineering Conference, volume 4, pages 815–822. International
Society of Offshore and Polar Engineers, International Society of Offshore and
Polar Engineers, 2014.

[41] Dassi F., Mola A., and Si H. Curvature-adapted remeshing of CAD surfaces.
Engineering with Computers, 34(3):565–576, 2018.

[42] Olivieri A., Pistani F., Avanzini A., Stern F., and Penna R. Towing tank ex-
periments of resistance, sinkage and trim, boundary layer, wake, and free surface
flow around a naval combatant INSEAN 2340 model. Technical Report 421, Iowa
Institute of Hydraulic Research (IIHR), 2001.

[43] Mola A., Heltai L., and De Simone A. Wet and dry transom stern treatment for
unsteady and nonlinear potential flow model for naval hydrodynamics simulations.
Journal of Ship Research, 61(1):1–14, 2017.

[44] Sederberg T. W. and Parry S. R. Free-form deformation of solid geometric models.
ACM SIGGRAPH Computer Graphics, 20(4):151–160, 1986.

[45] Salmoiraghi F., Scardigli A., Telib H., and Rozza G. Free-form deformation,
mesh morphing and reduced-order methods: enablers for efficient aerodynamic
shape optimisation. International Journal of Computational Fluid Dynamics,
32(4–5):233–247, 2018.

[46] Koopman B. O. Hamiltonian systems and transformation in hilbert space. Pro-
ceedings of the National Academy of Sciences, 17(5):315–318, 1931.

[47] Schmid P. J. Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics, 656:5–28, 2010.

[48] Demo N., Tezzele M., and Rozza G. PyDMD: Python dynamic mode decomposi-
tion. Journal of Open Source Software, 3(22):530, 2018.

[49] Demo N., Tezzele M., Gustin G., Lavini G., and Rozza G. Shape optimization
by means of proper orthogonal decomposition and dynamic mode decomposition.
In Technology and Science for the Ships of the Future: Proceedings of NAV 2018:
19th International Conference on Ship & Maritime Research, pages 212–219. IOS
Press, 2018.

[50] Constantine P. G. Active subspaces: Emerging ideas for dimension reduction in
parameter studies, volume 2 of SIAM Spotlights. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2015.

SP.4-OR.9-D.1 Pag. 46/47



[51] Tezzele M., Ballarin F., and Rozza G. Combined parameter and model reduction
of cardiovascular problems by means of active subspaces and POD-Galerkin meth-
ods. In Boffi D., Pavarino L. F., Rozza G., Scacchi S., and Vergara C., editors,
Mathematical and Numerical Modeling of the Cardiovascular System and Appli-
cations, volume 16 of SEMA-SIMAI Series, pages 185–207. Springer International
Publishing, 2018.

[52] Tezzele M., Salmoiraghi F., Mola A., and Rozza G. Dimension reduction in het-
erogeneous parametric spaces with application to naval engineering shape design
problems. Advanced Modeling and Simulation in Engineering Sciences, 5(1):25,
2018.

SP.4-OR.9-D.1 Pag. 47/47


	TRIM RT SP.4-OR.9-D.1
	 Contents
	 Summary
	1 CAD Interface
	1.1 Fundamental geometric primitives
	1.1.1 Statement of primitives
	1.1.2 Implementing primitives based on projections onto CADgeometries

	1.2 Extending boundary representations into volumes
	1.3 Application examples
	1.3.1 Surface meshes described by CAD geometries
	1.3.2 Refinement strategy based on local maximum curvature


	2 CAD geometry aware BEM solver for free surface flows
	2.1 Fully nonlinear potential model
	2.2 Three dimensional hull rigid motions
	2.2.1 Linear momentum conservation
	2.2.2 Angular momentum conservation
	2.2.3 Rotation matrix and hull quaternions

	2.3 Discretization and numerical solution
	2.3.1 Boundary integral formulation
	2.3.2 Iso-parametric spatial discretization
	2.3.3 Collocation boundary element method
	2.3.4 Time discretization
	2.3.5 Treatment of CAD surfaces and fully automated mesh generation

	2.4 Numerical experiments
	2.5 Results and Discussion

	3 Model order reduction application
	3.1 Estimation of the resistance of a hull advancing in calm water
	3.2 Shape parametrization through free form deformation
	3.3 System evolution reconstruction with dynamic mode decomposition
	3.4 Parameter space verification and reduction by active subspaces
	3.5 Numerical Results

	 References

