
CTN01 00176 163601

TRIM
Tecnologia e Ricerca Industriale per la Mobilità Marina
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Summary

We describe different approaches for shape parametrisation techniques based on free
form deformation, radial basis functions and inverse distance weighting, allowing ef-
ficient geometrical morphing. We show for all these techniques several aspects to
highlight their potential in targeted applications.

Tests are performed in study cases related with naval and nautical applications (hulls,
propellers, etc). A particular attention is dedicated to the integration of shape mor-
phing and parametrisation with CFD solvers, as well as mesh generations. Further
efforts is given to the description of open source software libraries developed within
the project.
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1 Introduction

The present work focuses for the most part on problems modeled by parameterized
partial differential equations. In many cases of interest, the input parameters of such
PDE problems happen to be associated with the shape of the computational domain,
or of one of its portions. For instance, virtual prototyping applications very often
investigate on the influence that the shape of a given craft or artifact have on its
predicted performance. In some cases, through repetitive resolution of PDE systems,
such applications go as far as identifying the optimal shape of the craft or artifact under
study, or quantifying the sensitivity of its performance to variations of its geometry. In
these last cases, the virtual prototyping application pipelines will include optimization
or uncertainty quantification tools. Naturally, such mathematical algorithms can only
be fed with numbers. Thus, the main purpose of shape parameterization is that of
mapping any geometric variation of the object under study to variations of numbers —
the parameters — which then can be processed by any other mathematical algorithm
used in the virtual prototyping pipeline.

To allow for completely automated virtual prototyping and optimization pipelines, it
is very important that the shape parametrization algorithm is able to automatically
obtain the deformed domain and computational grid once the shape parameter values
are prescribed. Such constraint not only ensures that repeated solution of parameter-
ized PDE problems is possible also when shape parameters are included among the
inputs, but it also significantly limits the time required for meshing, which in such a
framework typically represents the most time consuming activity in terms of human
operator hours.

A further constraint for shape parameterization algorithms arises from their application
in the context of model order reduction. As discussed with greater detail in several
chapters of the present work, many modal decomposition strategies used in ROMs are
based on a snapshot matrix which is obtained under the assumption that the PDE
problem degrees of freedom number and order remains unaltered as input parameter
values are modified. For such a reason, the shape parameterization algorithm must
not alter the topology of the computational grid used for the PDE resolution. Thus,
a simple approach consisting in creating a new mesh after the shape of the domain
has been altered is not suited for ROM applications. A more comprehensive strategy
which deforms the computational mesh along with the domain geometry is needed.

For this reason, in the present work we first analyze algorithms that are suited for
the deformation of codimension one subsets of R2 or R3, which are used to define the
geometry of computational domain through the description of their boundary repre-
sentation. In two dimensions, codimension one subsets are typically described through
the points of piecewise linear curves representation or by the control points and nodes
of Non Uniform Rational Basis-Splines (NURBS) curves included in Computer Aided
Design (CAD) files. In three dimensions the most common representations of codimen-
sion one subsets are given by the points and connectivity of surface triangulations, or
by the control points and nodes of NURBS saved into CAD files. After this, we focus
on the deformation of codimension zero computational domains in R2 or R3, which are
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typically used to define computational grids. Both in two and three dimensions, these
domains are typically described through the nodes and the connectivity of polygonal
or polyhedral tessellations. It is important to stress that an additional advantage of
deforming both the domain geometry and the computational grid in a consistent way,
is that it allows for a strong interaction between design and simulation teams. In fact,
the shape modifications validated by PDE based simulations will readily be available
for production with no further processing.

In the present work, we first consider parameterization algorithms which attempt to
come up with a general law to deform at once the whole two or three dimensional space
in which the morphed object is embedded. Such general purpose algorithms typically
operate extending or interpolating the displacement of a relatively small set of control
points, to all the points of the two or three dimensional space. Thus, the displacements
of such control points become the user prescribed shape parameters. The position of
each point of the objects of interest is then displaced through interpolation of the
control points displacement to obtain the modified shape. This paradigm is common
to Free Form Deformation (FFD), originally proposed in [1], and to the application
of Radial Basis Functions (RBF) interpolation [2] and Inverse Distance Weighting
(IDW) interpolation [3] to shape parameterization. A considerable advantage that
these algorithms present, is that they can be indifferently operate on the points of
domain geometries or on the nodes of computational grids. For this reason they have
been easily applied to CAD geometries, as for instance in [4], and to computational
meshes as in [5]. On the other hand, one of the possible drawbacks of these tools is
that the shape parameters identified are not necessarily related to a specific physical
behavior of the object under study. For instance, a simple scaling parameter can
affect the aspect ratio of a ship hull and have a clear effect on its hydrodynamic
performance. On the other hand, the effect of the prescribed displacement of one of
many shape control points on the hull performance is more difficult to establish. Ideally,
in several engineering applications the shape parameter should be readily associated
to qualitative variations in the designed object performance. Moreover, in some cases
general purpose algorithms might violate engineering constraints on the shapes to be
deformed. This is for instance the case of aircraft and ship propellers, which are objects
with a highly engineered shape and strict design rules [6]. Thus, we also discuss cases
in which the shape parameterization strategy is tailored to certain bodies to alter their
shape preserving the geometric characteristics they have been designed to possess.

The content of this work is organized as follows. In Section 2 we introduce and discuss
the mathematical background of different algorithms for shape parameterization. After
general purpose methods such as free form deformation (FFD), radial basis functions
(RBF) interpolation, and inverse distance weighting (IDW) interpolation are presented,
we describe examples of different object specific deformation strategies. In Section 3,
we discuss the application of all these strategies to deformation of both domain geome-
tries and computational meshes. In such context, we also present applications of the
proposed shape parameterization methodologies to industrial and real life problems.
Finally, in Section 4 we provide some concluding remarks, as well as some interesting
perspectives for the field of shape parameterization in the next few years.
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2 Shape parametrisation techniques

In this section we are going to present a diverse range of possible shape parameteriza-
tion tools. We divided such deformation techniques into two main categories based on
their objective: the general purpose shape parameterizations and the object specific
ones.

2.1 General purpose shape parameterization algorithms

In the first category we can group such morphing techniques which come with a general
law to deform the whole 3D space at once. They usually make use of a set of control
points to move in order to propagate the desired shape deformation.

Let us introduce a physical domain Ω ⊂ R3, and a general parametric deformation
map M(·, µ) : R3 → R3 acting on Ω, where µ ∈ P represents the parameters vector
characterizing the morphing.

In the following subsections we are going to present the specific definition of M for
three non-affine techniques such as free form deformation (FFD), radial basis functions
(RBF) interpolation, and inverse distance weighting (IDW) interpolation. For affine
maps used in the model order reduction context refer to [7], while for a more general
overview we suggest [8]. For an efficient implementation of the methods presented
below we recommend the open source Python package called PyGeM [9], which also
integrates easily with industrial CAD files.

2.1.1 Free form deformation

Free form deformation is a well-known morphing technique for both local and global
deformations of a given object. Originally presented in [1], in the last decades it
has gained popularity in the context of parametric PDEs and model order reduction
for shape optimization studies [10, 11, 12, 13, 14], optimal flow control problems [15],
sailing boats [16], in naval engineering [4, 17, 18, 19, 20, 21] and CFD applications [22],
and in isogeometric analysis [23, 24], to cite a few. Since the deformation induced
by the FFD does not depend on the topology of the object to be morphed, it is
very versatile and non-intrusive, especially for complex geometries or in industrial
contexts [25, 26, 27].

FFD deforms the physical domain Ω by propagating the displacements of a lattice of
points, called FFD control points, placed in Ω. The map M is the composition of
three different geometric deformations, that is

M(·, µ) := ψ−1 ◦ T̂ ◦ ψ(·, µ), µ ∈ P. (1)

Figure 1 depicts such maps on a simple bidimensional example. The function ψ rep-
resents the affine mapping from the physical domain Ω to its reference configuration
Ω̂. The FFD control points P are deformed and the morphing is propagated to all the
points within the lattice, usually by using Bernstein polynomials but also other choices
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are possible. The displacements of such control points along the cardinal directions de-
fine the parameters vector µ. The map T̂ (·, µ) : Ω̂ → Ω̂(µ) for a general 3-dimensional
case with a lattice of L×M ×N control points is then defined as follows:

T̂ (x, µ) =
L∑
l=1

M∑
m=1

N∑
n=1

blmn(x)Plmn(µlmn) ∀x ∈ Ω̂, µ ∈ P, (2)

where blmn stands for the Bernstein polynomials of degree l, m, n in each direction, and
Plmn(µlmn) := Plmn + µlmn, with Plmn indicating the coordinates of the FFD control
point with indices l, m, n. By exploiting the good properties of such polynomials
it is also possible to impose continuity constraints by adding control points. This is
particularly useful at the interface between the unmorphed part of the geometry and
the lattice of control points, for which usually physical constraints have to be satisfied.

In the classical offline-online framework we emphasize that the terms blmn(x) can be
computed in the offline phase, while in the online phase we just perform linear com-
binations of precomputed quantities depending on x and µ-dependent control points
locations. Moreover since ψ and ψ−1 are affine maps the separation of the two phases
remains.

Figure 1: Sketch of the three deformation maps which compose the FFD morphing.

2.1.2 Radial basis functions interpolation

With radial basis function (RBF) [2] we intend any smooth real-valued function φ̄ :
Rd → R whose value depends only on the distance between the input and some fixed
point. This means that it exists φ : R+ → R such that φ̄(x) = φ(∥x− c∥), where ∥ · ∥
stands for the Euclidean distance and c is some fixed point.
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To illustrate the many possible choices among all the RBF, in Figure 2 we consider a
simple univariate example where we approximate the function f(x) = 0.5 sin(4πx) +
exp(x cos(2πx)) using 6 different type of radial basis functions which are:

� multi-quadratic biharmonic splines (also called multiquadric) [28], defined as
φ(r) =

√
1 + (rε)2;

� inverted multi-quadratic biharmonic splines (abbreviated in inverse in Figure 2) [2],
defined as φ(r) = 1√

1+(rε)2
;

� Gaussian [2], defined as φ(r) = e−(rε)2 ;

� cubic and quintic, defined as φ(r) = r3 and φ(r) = r5, respectively;

� thin plate [29], defined as φ(r) = r2 ln(r).

We remark that the list does not cover all the possible RBF. Figure 3 reports the
interpolation error over the entire domain for the different RBF described above.

1

2
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Multiquadric Exact Centers Inverse Exact Centers

1

2

y

Gaussian Exact Centers Cubic Exact Centers

0.0 0.2 0.4 0.6 0.8 1.0
x
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Quintic Exact Centers

0.0 0.2 0.4 0.6 0.8 1.0
x
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Figure 2: Interpolations corresponding to 6 different RBF. The exact function is depicted with
a red dashed line. The parameter ε is equal to the inverse of the average distance between the
sampling points.

We follow [30, 31] for a brief presentation of the radial basis functions interpolation
method, in order to define M(·, µ) for such technique. Let {xCi}

NC
i=1 be the control

points placed over the surface of the object we want to parametrize. We can induce a
deformation by moving these control points and interpolating them with a new surface.
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Figure 3: Interpolation error for different types of radial basis functions. Refer to Figure 2 for
the actual interpolations.

The parameters vector µ is composed by the displacements of such RBF control points.
Let φ be the selected radial basis function, and {γi}NC

i=1 be the weights associated to

the RBF centered in {xCi}
NC
i=1, respectively. We can define the deformation map M

for the RBF interpolation technique as

M(x, µ) := s(x, µ) +

NC∑
i=1

γi(µ)φ(∥x− xCi∥) ∀x ∈ Ω, µ ∈ P, (3)

where s(·, µ) is a polynomial term of degree 1, which means s(x, µ) = S(µ)x + c(µ).
The total unknowns are d + d2 for the polynomial term, and d ×NC for the weights,
where d = 2, or 3, depending on the dimension of Ω. Regarding the γi, let {yCi(µ)}

NC
i=1

be the new control points obtained from xCi after applying the displacements defined
by µ. The interpolation contraints we impose read as follows

M(xCi , µ) = yCi(µ) ∀i ∈ [1, . . . , NC ]. (4)

For the remaining unknowns due to the polynomial term, we impose the conservation
of the total force and momentum (see [2]) as

NC∑
i=1

γi(µ) = 0,

NC∑
i=1

γi(µ)x
(j)
Ci

= 0 ∀j ∈ [1, . . . , d], (5)

where x(j) denotes the j-th component of x.

We emphasize that the RBF contributions φ(∥x − xCi∥) can be precomputed in the
offline phase, while for a given µ in the online phase we just need to solve the d×NC +
d+ d2 linear system and perform the matrix vector product in Equation 3.

For an application of the RBF interpolation technique used to morph a carotid artery
we mention [32]. For aeronautics fluid-structure interaction problems see [33]. There
are also extensions of the method such as the rescaled localized radial basis function
interpolation method for nonconforming meshes [34], or the combination with non-
intrusive model order reduction [35, 36, 37].

SP.4-OR.10-D.1 Pag. 8/30



2.1.3 Inverse distance weighting interpolation

Inverse distance weighting is an interpolation method originally proposed in [3]. Let
{(xCi , f(xCi)}

NC
i=1, where xCi ∈ Rd, f(xCi) ∈ R for i = 1, . . . , NC , be the set of the

input-output pairs obtained evaluating f : Rd → R. The IDW interpolant of f is
defined as

IIDW[f ](x) =

NC∑
i=1

wi(x)f(xCi), x ∈ Rd, (6)

such that IIDW[f ](xCi) = f(xCi) for i = 1, . . . , NC . The functions wi : R
d → R are

defined as

wi(x) =


∥x−xCi

∥−p∑NC
j=1 ∥x−xCj

∥−p
if x ̸= xCi ,

1 if x = xCi ,
for i = 1, . . . , NC , (7)

where the power −p controls the rate influence of the i-th input point and ∥ · ∥ refers
to Euclidean norm. Such functions require to compute all the distances between the
point to interpolate x and the input data {xCi}

NC
i=1. Assuming the weight function

becomes negligible after a certain distance ϵ, we can rewrite Equation 7 into

wi(x) =


d(x,xCi

)−p∑NC
j=1 d(x,xCj

)−p
if d(x, xCi) ∈ [0, ϵ) ,

1 if d(x, xCi) = 0,
0 if d(x, xCi) ∈ [ϵ,+∞],

for i = 1, . . . , NC , (8)

where for sake of notation we define the distance function d : Rd × Rd → R+ as
d(x, y) = ∥x− y∥.

Such interpolation can be adopted as efficient tool for shape parameterization prob-
lems. Among the all contributions in literature, we suggest [38] for a parametric
computational grid by means of IDW, [33] for application of IDW into fluid-structure
interaction problems and [39] for an example of domain parameterization in a reduced
order modeling framework.

The main idea for shape parameterization using interpolation techniques is to extend
the deformation we impose to a limited set of control points by interpolating their
displacements. We define such parameter-dependent displacement at point xCi as
fµ(xCi) ≡ f(xCi , µ) ∈ R, for i = 1 . . . , NC . Interpolating the displacements with
IDW, we obtain

IIDW[fµ](x) =

NC∑
i=1

wi(x)f(xCi , µ), x ∈ Rd, µ ∈ P. (9)

We remark that we have considered until now scalar displacement, but IDW extension
to vector functions is trivial: assuming all components are independent, we simply
apply IDW to each component. Thus, considering a d-dimensional vector as displace-
ments, we can derive the deformation map M(·, µ) : Rd → Rd from the former equa-
tion:

M(·, µ) :=
NC∑
i=1

wi(·)f(xCi , µ), x ∈ Rd, µ ∈ P. (10)
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Equation 10 shows the decoupling between the spatial dependent terms (wi(·)) and the
parameter dependent ones (f(xCi , µ)). This implies that for any x, we can precompute
(and store) the weight functions, requiring to compute only the parameter dependent
term for any new evaluation of M(·, µ) in the online phase.

2.2 Object specific shape parameterization algorithms: some
examples

The general purpose parameterization techniques just described, are ideal in cases in
which the artifacts or objects to be deformed are not bound to preserve local or global
geometric properties throughout the deformation process. In the engineering field,
several objects or their components are often designed for the purpose of carrying out
a distinct task or to deliver a specific performance. Hence, the parameter-to-shape
relationship must be built so that all the deformations considered result in shapes
which would not impair the possibility the component to carry its task or provide the
required performance.

There are several examples of this situation, which can also be used to illustrate differ-
ent possible constraints the geometry can be subjected to. For instance, the aerody-
namic design of an aircraft wing tip fuel tank or external drop fuel tank will probably
require that any shape considered must be characterized by a certain volume. A simi-
lar situation is encountered in the design of the ballast-filled bulb at the bottom of the
keel of a sailing yacht. To provide the adequate restoring moment, the bulb weight is
fixed, and if the ballast material is not changed this results in a volume constraint.

RBF, IDW, and FFD methodologies in the form described in the previous sections,
are not suited to automatically produce shapes that retain a fixed volume. Of course,
it is in principle possible to complement such algorithms with the addition of a supple-
mentary parameter which can be used to scale each RBF or FFD deformation in order
to obtain the prescribed volume. Such parameter, however, might in some case turn
out to be not completely independent with respect to the original one, which must be
accounted for in the overall design process.

In addition, there are several situations in which general purpose algorithms cannot
be employed without a more invasive and complex adaptation. As an example, we
can refer to the design of ship or yacht hulls. Typically, the lateral walls of a hull are
constrained to be vertical or at least straight, as this results in easier management and
arrangement of internal passengers or cargo areas. Compared to a global constraint,
such as the aforementioned fixed volume one, this local constraint is more difficult to
fulfill. Both RBF and FFD would in fact require significant modifications if they have
to be effective for the generation of parameterized hulls with vertical or straight side
walls. An even more important case of shapes that present local constraints limiting the
effectiveness of general purpose shape parameterization algorithms is that of aircraft
wings and propeller or turbo machinery blades. These objects are originally designed
to have airfoil sections with standard and tabulated shapes having well documented
fluid dynamic performance. As remarkably efficient estimates of the overall wing or
blade performance can be obtained from its airfoil section ones, it is very important
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Figure 4: Front view (on top) and side view (on bottom) of a planing hull featuring a double
chine line and substantially straight walls above the chine line.

that any parameterization algorithm applied on these artifacts does not lead to sections
with non tabulated shape or performance. It is clear that also in this case RBF and
FFD as they have been described cannot generate shapes that grant this property.

In light of all the problems illustrated by these examples, in this section we will discuss
shape parameterization algorithms adapted to specific design problems. In particular,
making use of some of the aforementioned design cases (i.e. planing hull yachts and
naval propeller blades) we will illustrate possible approaches that can be used when
general purpose shape parameterization methods cannot be directly employed.

2.2.1 Planing Yacht Hulls

We now focus on the case of the planing hull yacht illustrated in Figure 4. The geometry
of this kind of hull is typically characterized by a V-shaped lower part, surmounted by
a lateral wall which is typically straight and — except in the bow region — presents
a constant angle with respect to the vertical direction. The V-shaped bottom part of
the hull and its lateral walls are typically divided by a sharp edge named chine. The
example presented in Figure 4 presents a double chine line which delimits a narrow
chine surface.

In the hydrodynamic design process of this kind of hulls, engineers typically want
to investigate how shape modifications affect performance in terms of lift, drag and
stability (or seakeeping). It is quite clear that deforming the V-shaped bottom part
of the hull, which is in contact with the water throughout the navigation, will have
the highest impact on the overall hydrodynamic behavior of the hull. For this reason,
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design engineers are mainly interested in modifying the lower part of the hull and —
at a lower extent — the chine surface, while they want to keep the top part of the
hull substantially non deformed. Under these requirements, FFD can hardly be used
in this context, as its smooth shape functions would not allow to sharply separate
what happens above and below the chine lines. As for RBF, it is still possible to
employ its control points displacements to impose the desired deformation on the
bottom part of the hull, and a somewhat rigid displacement on the top part, so as
to accommodate for the bottom part deformation. Yet, this opens the problem of
identifying the RBF control points displacements that would result in the desired
deformations of the bottom and top hull regions. So, rather than solving the latter
problem, it is convenient to deal with the more intuitive problem of developing a
parameterized law to displace any point on the hull surface and generate admissible
overall deformations. As we will see in section 3.3, RBF is still used in this context
as an extremely valid tool to extend the hull surface deformations to the surrounding
volume and adapt the volumetric computational meshes and carry out parameterized
fluid dynamic simulations.

The parameterized law to displace any point on the hull is in this case developed
taking advantage of the main design features of the object at hand. As suggested in
Figure 5, the transverse vertical sections present the same topology for most of the hull
length. Each section is in fact characterized by a bottom vertex which coincides with
the section plane intersection with the keel line, and by two vertices resulting from
the section plane intersection with the chine lines. So, the parameterization strategy
devised acts modifying each section with the same strategy based upon these easily
identifiable points. More specifically, the V angle of the hull bottom is altered by
rigidly rotating around the keel line intersection and with the desired angle θ, all the
section points located between the internal chine line and the keel line intersections.
This rotation results in a net displacement of the internal chine line intersection point.
Such displacement is used to rigidly translate the section of the chine and wall sur-
faces, and ensure that the top part of the section remains connected with the rotating
bottom. With the same principle, once these two steps are completed, it is possible
to add rotations to the chine surface and, if desired, to the wall surface. Finally, a
further parameterized function can be introduced to modulate the sectional rotations
introduced along the hull longitudinal coordinate.

In summary, the present example suggests that when a highly engineered object such
as a planing yacht hull is to be parameterized fulfilling some specific shape constraints,
a viable possibility is that of exploiting the main topological features of the original
geometry. Such topological features are often a result of the characteristics that de-
signers want their object to possess. So, as is the case of the keel and chine lines
for a planing hull, they can be used to build a parameterization law that it useful to
engineers.
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θ

Figure 5: Vertical section of a planing hull perpendicular to its longitudinal axis. The bottom
vertex of the section is the intersection of the section plane with the keel line. The intersections
of the two chine lines are also visible on the bottom left side of the section. The parameteri-
zation strategy first step consists in a rigid rotation of the bottom part of the section around
the keel intersection. This is combined with a rigid translation of the chine and wall surface
sections needed to keep the top part of the section in contact with the displaced bottom part.

2.2.2 Propellers

As previously mentioned, aircraft wings and propeller or turbo machinery blades rep-
resent further examples of objects for which RBF, IDW, and FFD are not ideal shape
parameterization algorithms. This is mainly because such objects are designed starting
from a set of two dimensional airfoil sections, which are placed in the three dimensional
space according to some strict design rule. If we consider for instance a propeller blade,
a specific design table first reports the list of airfoil section shapes to be used in its
generation. In such design table, each airfoil section, originally described in the R2

space, is also complemented with a set of parameters (radius, chord length, pitch an-
gle, skew angle and rake) which indicates how the airfoil section should be ultimately
placed in the R3 space. As depicted in the left part of Figure 6, the airfoil sections are
first laid on cylinders with axes coinciding with the propeller one. Thus, each airfoil
section is associated to a specific radius. The chord length parameter represents the
distance between the leading and trailing edges of the airfoil, projected on the section
cylinder. The skew and pitch angles represent instead the rotations prescribed for each
section around the blade axis and the entire propeller axis, respectively. Finally, the
rake is the translation along the propeller axis prescribed for each section. For more
details about propeller blade design the interested reader is referred to [6].

It should at this point appear clear that the design procedure described automatically
leads to parameterized propeller blades. In fact, the value of chord length, pitch angle,
skew angle at each radius corresponding to the airfoil sections available, are indeed
parameters of the generated propeller blade. Moreover, several different families of
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Figure 6: Front view (on the left) and lateral view (on the right) of a ship propeller. In both
images, one of the five propeller blades surface is transparent, and a set of airfoil cylindrical
sections is indicated in red to indicate how the blade surface is generated as the envelope
surface of the single sections.

parameterized airfoil sections are available across the engineering community. For in-
stance, the NACA airfoils [40] are parameterized based on quantities such as maximum
thickness, maximum deflection of the camber line and location along the chord of the
maximum deflection point.

Despite the previous description suggests that the geometry of propeller blades — as
well as turbo machinery blades and aircraft wings — possesses an inherent parameteri-
zation, it is still possible to modify such parameterization to have better control on the
finalized shape. As depicted in Figure 7 for the case of the pitch radial distribution it
is possible to make use of B-splines to interpolate the blade parameters variation along
the radial coordinates. This results in the possibility of switching the shape parameters
to the control points of the single chord length, pitch, skew and rake radial distribu-
tion curves. Given the smoothness of B-splines, this approach results in a smoother
parameter dependence, especially considering that the CAD modelers which are used
to build the three dimensional surfaces passing through the airfoil sections, are also
based on B-splines and NURBS surfaces. A further advantage of this approach is that
if the two dimensional airfoil parameters are also interpolated with this strategy, the
number of airfoil sections can be arbitrarily increased to provide the CAD modeler
with more sections and have more control on the generated three dimensional surfaces.
For an efficient selection of such parameters using the active subspaces method please
refer to [41].

Both the standard generation of the three dimensional propeller blade from its design
table, and from B-spline interpolated radial distributions of airfoil parameters, have
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Figure 7: The airfoil sections pitch as a function of relative radial coordinate. The plot shows
both an initial pitch distribution (red continuous line) and the control points associated with
its B-spline interpolation (red piecewise linear line). A new, smooth, pitch radial distribution
(blue continuous line) is then obtained through a displaced set of pitch control points (blue
piecewise linear line).

been implemented in the Python package BladeX [42]. Given sectional values of airfoil
section, radii, chord length, pitch and skew angle and rake, BladeX allows for direct
generation of CAD representations of the corresponding blade surface. In addition, the
software supports the B-spline representation of the airfoil sections parameters varia-
tions along the relative radial coordinate, which as said can be used to re-parameterize
the blade shape, or to enhance the smoothness of the resulting CAD surface.
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3 Tests and applications

The parameterization strategies described in the previous sections have been applied
to different design problems. In the present section, we will describe a wide spectrum
of shape parameterization examples, with particular focus on practical details such
as the file format containing the geometric information of the considered objects. In
addition, we will distinguish between cases in which the parameterization tools only act
on the surfaces describing the object of interest [4, 41], or are instead used to deform
a three dimensional computational grid [43]. In the former cases, the deformation of a
codimension1 1, R2 surface embedded in R3 is studied. In the latter case, the complete
morphing of a codimension 0 computational domain Ω ⊂ R3 is instead carried out.

3.1 Geometric model parameterization

The present subsection focuses on the deformation of an object or artifact shape
through parameterization of the surfaces that delimit it. We point in fact out that
most Computer-Aided Design (CAD) tools used throughout the industrial manufac-
turing community, identify the shape of three dimensional objects through the math-
ematical description of its codimension 1 boundaries. For this reason, we first discuss
applications in which surfaces in R3 are specified by means of both triangulations and
parametric equations.

3.1.1 Triangulated surfaces

Triangulated surfaces describe a codimension 1 surface through a finite non overlap-
ping triangulation obtained by discretizing the original surface manifold. Such objects
are particular widespread in many computational and simulation contexts, since their
discrete nature. Contrary to CAD surfaces (that will be extensively discussed in next
subsection), triangulated surfaces are indeed defined only by the coordinates of the
triangles vertices and their topological connections, resulting easier to be handled.
Usually stored into STereo Lithography interface (STL) files [44], triangulated surface
are widely adopted within the meshing phase. In several applications, the surface de-
formation is preferred to computational mesh deformation, since it allows to apply the
meshing procedure after surface morphing, ensuring a better control on the quality of
final mesh. It is possible to note that such approach requires to create a new grid for
all the deformations, increasing the computational effort needed.

Given the generic parametric deformation map M(·, µ), its application to triangulated
surface is obtained by applying such mapping to all the nodes of the triangulation.
Thus, the topology is maintained unaltered. Figure 8 shows a demonstration of surface

1The codimension of a subspace U of a vector space V is the dimension of the quotient space V/U .
It is indicated by the symbol codimV U and is equal to the dimension of the orthogonal complement
of subspace U in V , namely

dimU + codimV U = dimV.
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Figure 8: FFD application to the STL triangulation representing the bulbous bow of a cruise
ship hull. The left panel, which represents the original bow geometry, also displays the FFD
undeformed control point lattice. On the right, the visible displacement of the control point
results in a deformed STL geometry.

deformation applied to the bulbous bow of a naval hull by means of FFD for a shape
optimization problem [14] where reduced order modeling was involved to reduce the
computational load. Here the control points are spanned around the bulb of the ship,
in order to induce a deformation only in such region and reducing then the wave
resistance of the ship (in a calm-water environment). As we can note from the picture,
the surface derivative is kept continuous, an important feature for many industrial
applications.

3.1.2 CAD surfaces

We now describe some examples of the application of the shape parameterization
strategies discussed in Section 2 to Non-uniform rational basis spline (NURBS) sur-
faces [45]. NURBS are an important component of numerous industry and computer
graphics wide CAD standards such as IGES [46], STEP [47] and ACIS.

A full mathematical description of NURBS and their application to analytic geometry
is beyond the scope of the present work (we refer the interested reader to [48, 49]). Yet,
for our purposes it is at least important to recall here that NURBS curves and surfaces
are defined by their order, by a set of weighted control points and by a knot vector.
Control points in particular are always either directly linked to the curve or surface,
or behave as if they were connected by a spring to it. For this reason, they offer the
possibility to modify the NURBS surface by altering the position of the control points.
This very intuitive editing mechanism — which is among the features that made this
mathematical instrument very popular in the CAD and computer animation industries
— is here exploited to apply any parameterization strategy to NURBS surfaces. As
illustrated in Figure 9, the deformation of a NURBS curve through FFD is carried out
directly applying the parameterization algorithm to the NURBS control points, and
then computing the resulting modified shape.
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Figure 9: A simplified two dimensional example of the application of FFD to a NURBS curve.
On the left, the procedure starts by placing a FFD lattice (red dots) on top of a NURBS curve.
On the right, the displacement of the FFD control points is used to modify the position of
the NURBS control points (black dots). The modified control polygon results in the morphed
NURBS curve displayed on the right.

It is important to point out here that the deformed surface obtained moving the CAD
control points is identical to the one obtained moving every surface point only if the
transformation law applied is affine [48]. We also recall that most of the parameteriza-
tion algorithms discussed in the present work do not, in general, lead to affine transfor-
mations. Thus, we must remark that deforming a CAD shape through displacement of
its control points might result in slight differences compared to deforming it through
a surface triangulation. We report that, for all the examples discussed in the present
chapter, the difference between applying the same deformation to NURBS surfaces or
to their triangulated equivalent is quite modest. Yet, we stress that this issue must
be taken into account if consistency between NURBS and triangulated surfaces defor-
mations must be enforced up to a very strict tolerance. Ideally, in the latter case it is
possible to resort to least square fitting to generate a novel NURBS surface passing as
close as possible to the deformed triangulation. We warn, however, that this procedure
would still bring in the possibly significant source of error associated with the least
square minimization.

Figures 10 and 11 depict an example of the application to CAD geometries of the
parameterization algorithms described in Section 2 and presented in [17]. The shape
considered is that of the DTMB 5415 hull [50], which was originally conceived for
the preliminary design of a US Navy Combatant ship. FFD is here used in the bow
regions to displace the control points of the hull NURBS surfaces and create a family
of hulls which feature deformed sonar domes. The images display both the front and
side views of the original DTMB 5415 IGES geometry (right and bottom), and of the
IGES geometry of a specific modification in which the sonar dome has been enlarged
and inclined downwards (left and top).

As can be appreciated in the pictures, the DTMB 5415 hull portrayed in Figures 10
and 11 is composed of three NURBS surfaces. Such faces border with each other
through shared edges in which the shape is C1 or C0 continuous only up to a tolerance
specified in the IGES file containing the hull data. We use such very common example
to remark that an additional problem associated with deforming NURBS surfaces
through displacement of their control points, is that it can introduce discontinuities in
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shapes composed of several CAD patches. Despite all the parameterization strategies
described in this chapter are designed to be continuous maps from R3 to R3, the
control point distribution in two bordering faces can in principle be so different, that
the deformation affects such two surfaces in a non equal way. This might potentially
alter the continuity tolerance of the original CAD file, and result in small gaps, overlaps
or normal vector jumps appearing between the NURBS surfaces which were originally
smoothly joined. Such loss of C1 and/or C0 continuity is more pronounced when
the deformation map gradients are high relative to the local NURBS control points
density. Thus, a solution to mitigate the problem is that of adding control points
to the NURBS surfaces. In the vast majority of cases considered, such procedure
proved effective in obtaining small continuity tolerances in composite CAD surfaces
deformations, although the increased amount of control points results in heavier CAD
files [9].

Figure 10: An application of the FFD algorithm to the NURBS surface specified by means
of and IGES file. A front view of the DTMB 5415 navy combatant hull featuring a modified
and enlarged bow is displayed on the left; the original hull surface is displayed on the right for
reference.

Figure 11: A side view of the IGES geometry of the DTMB 5415 navy combatant hull shown
in Figure 10. The top picture depicts the CAD surface of the hull, modified via FFD. The
bottom picture shows the original hull surface.
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Figure 12: Representation of a family of ship propellers generated with bottom-up construc-
tion. The different propellers are obtained in this case through scaling of the skew angle curve.
In particular, in the image an original propeller blade shape is presented along with two mod-
ifications resulting from scaling the skew curve by factors 0.8 and 1.1, respectively.

The ship propeller family shown in Figure 12 represents instead a different strategy to
obtained parameterized IGES geometries. The algorithm for propeller design described
in Section 2 has been used for the bottom-up generation of parameterized ship propeller
blades. In this specific case, each blade is generated as the NURBS surface passing
through 12 airfoil sections, each being defined by different curves in the XY plane, and
different values of radial coordinate, chord length, pitch angle, skew angle and rake.
The procedure implemented in the library BladeX [42] allows for the specification of
the airfoil sections shape by means of a NACA 4 or 5 digits identifier or by means of
a CSV file. Once the radial coordinate, chord length, pitch angle, skew angle and rake
associated with every section are specified by the user, the airfoil sections points are
placed in the three dimensional space, and a series of NURBS curves are generated,
passing through all the points of each section. Finally, the NURBS surface passing
through all the sectional curves is generated and joined to the propeller hub. The
latter operations are carried out making use of functions of the CAD Python library
PythonOCC [51]. In the example reported in Figure 12, the original blade shape is
portrayed along with two variants generated altering the skew angle distribution along
the radial coordinate. We recall that the skew angle designs the position of each radial
blade section along the circumferential coordinate of the propeller disc plane. Thus,
the blade generated scaling the skew values by a factors 1.1 appears more curved along
the radial direction with respect to the original design. On the other hand, scaling the
skew values by a factor 0.8 results in in a propeller with blades that appear straighter
along the radial direction.

We finally point out that the specific deformation displayed in Figures 10 and 11 has
been part of a family of 130 IGES hulls generated via FFD in the framework of a
CFD simulation campaign presented in [17]. In such work, the geometric deformation
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Figure 13: Examples of computational domain deformation using free form deformation: the
first picture (left) shows the edges of the original mesh, while the others illustrate two deformed
domains.

was concentrated in the region surrounding the bulbous bow. A further set of 130
hulls has been obtained deforming the full length of the hull, and has been used to
carry out the CFD simulations presented in [4]. A family of 500 ship propellers as the
one depicted in Figure 12 has been also designed in the framework of an optimization
campaign presented in [41]. In all such works, active subspaces have been successfully
used to detect possible redundancies in the geometric parameters introduced with
FFD. On this note, we point out that active subspaces analysis is an extremely useful
post processing tool to complement shape parameterization algorithms, as it allows
for the identification of a reduced number of combined parameters which have most
effect on the output of interest. In addition, it also can be used to evaluate the
output sensitivity to variations of the original geometric parameters and eliminate
inconsequential parameters.

3.2 Computational domain parameterization

In the present section, we turn our attention to codimension 0 domains, and their pa-
rameterization through the methodologies described in Section 2. Since these domains
include subsets of R3 in 3D and of R2 in 2D, the examples will mainly refer to the
morphing of volumetric computational grids for the solution of PDE problems arising
from fluid dynamic or structural simulations.

3.2.1 FFD and RBF applied to computational grids

A first example, presented in Figure 13, illustrates the application of FFD for the defor-
mation of the structured surface mesh surrounding a square in a 2D application. The
images, which refer to the original configuration (left) and to two deformed domains
(center and right), depict a close up of the grid region surrounding the square.

Figure 14 shows instead an application of RBF in the context of a CFD simulation
campaign [52]. The pictures show two possible modifications of the Ahmed body
obtained altering the inclination of the diagonal surface at the rear end body. The
computational grid for the CFD simulations is deformed through the distribution of
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Figure 14: The application of RBF shape parameterization to the Ahmed body and the sur-
rounding volumetric mesh for CFD simulations. In the test illustrated, the inclination of the
diagonal surface at the rear end of the Ahmed body is modified to investigate its effect on aero-
dynamic performance. Two configurations, including a vertical cut of the volumetric mesh,
are shown in the top images. For reference, path lines of mean velocity field resulting from the
corresponding Unsteady RANS simulations are shown in the bottom pictures.

a series of control points on the boundaries of the 3D domain, and the displacement
of a portion of those located on the modified diagonal surface. The vertical cut of the
resulting volumetric grids are shown in the plots on the top. The corresponding bottom
images display the path lines of the mean velocity field resulting from the Unsteady
RANS simulations carried out with the deformed grid. As can be appreciated, the
deformation strategy is able to alter the original computational mesh without impairing
the convergence and effectiveness of the CFD simulations.

3.3 The use of RBF to extend boundary deformation to internal
grid nodes

In this section, we discuss a further interesting and useful application of RBF to prop-
agate the boundary deformation to the internal nodes of volumetric grids for PDEs
based simulations. Most of the algorithms designed to modify the shape of specific
artifacts — such as the planing hulls and propellers as described Section 2.2 — re-
sult in the deformation of co-dimension one manifolds. Thus, if these deformation
methodologies must be used in a pipeline involving volumetric PDEs resolution, they
must be necessarily complemented by an adequate strategy to extend the boundary
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Figure 15: Examples of computational domain deformation using free-form deformation: the
first picture (left) shows the edges of the original mesh, while the others illustrate two deformed
domains.

displacements to the whole, co-dimension zero, computational domain.

Figure 15 shows the deformation of the CFD computational mesh past a PPTC ship
propeller, following a variation of the blades pitch in the tip region obtained with the
strategy described in Section 2.2.2. In the plot, the blue lines represent the edges of a
cut of the volumetric mesh obtained by means of a plane perpendicular to the propeller
axis. The red lines refer instead to the edges of the deformed mesh in correspondence
with the same sectional plane. The close up of the blade tip region displayed on
the right, show how the deformation of the blade surface is smoothly propagated
throughout the internal nodes of the volumetric mesh, avoiding the presence of inverted
or highly skewed cells.

Finally, we want to stress that for practical reasons the RBF extension of to volumetric
meshes is often convenient for surfaces originally deformed with FFD. As previously
discussed, in principle FFD allows for simultaneous deformation of both boundary
surface and volumetric grid. Yet, when deforming volumetric meshes, the aim is that
of distributing the deformations over a high number of cells, rather than concentrating
all the displacements in a very confined region in which cells can get distorted or even
inverted. But because FFD only affects points located within the control points lattice,
this means that the latter must extend for a bigger volume. In addition, to maximize
the volumetric mesh quality, the user must include more control points in the lattice
to make sure that different deformation magnitudes are imposed in regions close to the
deformed surface and far from it. Such manual control over the local mesh deformation
can often become quite cumbersome.

For such reasons, in several cases it will be convenient to only employ FFD to deform
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Figure 16: A sectional view of a volumetric grid deformation carried out by means of RBF in
a naval engineering problem. The blue lines denote the original volumetric mesh edges, while
the red lines indicate the deformed configuration.

the boundary surface mesh, or a triangulated format of its geometry. Then, after
such a surface mesh has been modified through FFD, it is possible to resort to RBF to
propagate the boundary displacements to the internal nodes of the volumetric mesh for
CFD simulations. In a broader sense, RBF is an interpolation algorithm, and is here
used to estimate the nodes displacement function on every point of a domain, based on
the function values prescribed on the boundary. In the framework of RBF, this is done
by linear combinations of radial bases used to approximate in any point of the domain a
function with values prescribed only in a finite number of points. In the case of interest,
the displacement field function is prescribed only on the points of the boundary surface,
and is interpolated in the positions corresponding to every node of the volumetric mesh.
The application of such procedure in a naval engineering test case (see [5] for further
detail) is illustrated in Figure 16. The illustration displays a sectional view of the
original (blue lines) and deformed (red lines) volumetric mesh around the surface of a
ship hull. As documented in the original publication, the combined FFD/RBF strategy
has been use to successfully generate 200 shape variations of a container ship hull,
and accordingly deform the volumetric grids to carry out an optimization campaign
based on the OpenFOAM CFD solver library. The output of the checkMesh utility
of the OpenFOAM library confirms that the mesh deformation is not significantly
altering both the minimum face area and minimum cell volume, while it only leads to
a modest — 7.2% at most — increase of average mesh non-orthogonality index. Such
an increase, however, is well below level that can significantly affect the result of the
CFD simulations.
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4 Concluding remarks

In this chapter we presented a diverse range of possible non-affine shape morphing
and parameterization techniques. In the general purpose group we introduced free
form deformation, radial basis function interpolation, and inverse distance weighting
interpolation. These techniques are characterized by the fact that they can be applied
to any object or part of it, without any limitations. Then we presented more specific
deformation methods which are necessary when we want to morph highly engineered
artifacts while preserving some characteristics of these objects. We focused on naval
engineering applications, where deformations of a marine propeller and a side-wall of a
planing motor yacht are presented. These artifacts have also to be actually manufac-
tured so general purpose parameterizations can easily generate object which are very
costly to produce or infeasible.

In the second part of the chapter we presented methodologies to guarantee that any
modification of the geometry is reflected in the computational mesh. The advantage
of these techniques is twofold: first the shapes validated by simulations will also be
available for manufacturing; second we can easily apply non-intrusive reduced order
methods to the database of solutions since we preserve the same number of degrees of
freedom.

Future studies will address the possibility to apply the free form deformation technique
while satisfying some constraints. For example we could want to preserve the volume
of the deformed object, or we could want to impose the presence of a second object
near the one to morph.
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