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1. INTRODUCTION
The objective of the current work is to analyze blocking and trapping of flexural-gravity waves
that propagate along the coupled water and floating structure surface. As the first step, we
need to understand what these waves are and why they are required to be studied. Trapped
waves are the waves with finite total energy which exist near the submerged structure and
die out as they propagate away from the structure. On the other hand, the wave blocking is
a phenomenon in which the rate of wave energy propagation vanishes and is mathematically
expressed through linear water theory by the vanishing of the group velocity. The primary
cause of such a phenomenon is an opposing current in the ocean which creates a hydrody-
namic horizon and blocks the wave. A number of subsequent relevant studies which illustrate
the impact of compression and ocean current on wave blocking are available in [1, 2, 3]. In
the above-mentioned studies on flexural-gravity wave blocking accounted for the influence of
compression but considered only unidirectional ocean currents. The work has been extended to
two-dimensional uniform ocean current by [4] where they have also studied the trapped wave for
a horizontal submerged circular cylinder. However, in their work, the trapped mode frequency
spectrum inside the blocking frequency was not discussed in detail. In the present study , an
attempt is made to extend the work of [4] to find the trapped wave mode inside the frequency
band of blocking.

2. MATHEMATICAL FORMULATION AND SOLUTION FRAMEWORK
The domain for this physical problem is a homogeneous fluid bounded above by an ice cover and
below by a flat and rigid bottom. The Cartesian coordinate framework is chosen so that the z-
axis points vertically upward and the xy-plane is horizontal. Hence z = −h, z = f < 0 (x = 0)
and z = 0, respectively, denote the mean position of the flat bottom, the axis of the cylinder,
and the mean ice-covered surface, respectively. The region of the problem under consideration
is −∞ < x, y < ∞, −h < z < 0 with an effect of two-dimensional ocean current acting along
the xy-plane. Utilizing the linear water wave theory, the complex velocity potential satisfies
the three-dimensional Laplace’s equation and takes up the following form in the presence of
ocean current

Φ(x, y, z, t) = U1x+ U2y + φ(x, y, z, t), (1)

where U1 and U2 are the components of the current along the x- and y-directions, respectively.
The upper surface boundary condition is of Neumann type as described in [4]:(

D∂4z −Q∂2z + g +m0∂
2
t

)∂φ
∂z

=
(
∂t + U1∂x + U2∂y

)2
φ on z = 0, (2)

with D = Ed3/{12ρ(1 − ν2)}; Q = N/ρ; m0 = ρpd/ρ. The ice-cover parameters are E, ν,
d, N and ρp, which, respectively, denote Young’s modulus, Poisson’s ratio, thickness, uniform



in-plane compressive force and the density. Water density is denoted by ρ and the acceleration
due to gravity by g.
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Figure 1: Schematic diagram of the problem (following [4].)

The bottom
boundary condi-
tion due to the
flat and rigid bed
is

∂φ

∂z
= 0, on z = −h.

(3)
The incident wave
angle with the
positive x- direc-
tion is denoted
by α and the an-
gular frequency
by ω. The
wavenumber of the plane progressive wave that is denoted by k satisfies the following dispersion
relation:

G(u) = F+(u)e−2uh − F−(u) = 0, (4)

where

F±(u) = u
(
Du4 −Qu2 + g

)
±
[
ω − u(U1 cosα + U2 sinα)

]2
. (5)

The multipoles with singularity at the axis of the cylinder satisfying the governing equation
(1), and boundary conditions (2) and (3) can be written as

φn = φa
n(r, θ) cos(by − ωt) + φs

n(r, θ) sin(by − ωt), (6)

with

φs
n(r, θ) = Kn(br) cosnθ +

∞∑
p=0

dpnIp(br) cos pθ, (7)

φa
n(r, θ) = Kn(br) sinnθ +

∞∑
m=0

cmnIm(br) sinmθ, (8)

where v = b coshu; In(br) and Kn(br) are the n-th order modified Bessel functions of the first
and second kind, respectively, with argument br; cmn and dpn have the following representations:

cmn = (−1)mεn
∫∞
0

sinhmu sinhnu
[
A(v)evf + A(v)e−v(f+2h) + e−2v(f+h)

]
du,

dpn = (−1)pεn
∫∞
0

cosh pu coshnu
[
A(v)evf +A(v)e−v(f+2h)+e−2v(f+h)

]
du, with ε0 = 1, εn =

2, n ≥ 1 and A(v) = F+(v) (−1)
nevf+e−v(f+2h)

G(v)
. The linear combinations of all these symmetric

and anti-symmetric multipoles when pass through the body boundary condition on the surface
of the cylinder give rise to a system of homogeneous linear equations Ax = 0. For numerical
computation of trapped modes, we need to truncate the order of the matrix and locate the
frequency for which the determinant of the truncated matrix A vanishes.

Before we compute the trapping frequency in the blocking range, it is imperative to look
into the integral that arises in cmn and dpn. It has singularity when G(v) = 0. Inside the



blocking frequency band, except at the terminal frequencies (primary and secondary blocking)
and the point of inflexion, there are three distinct positive real roots, i.e., k1, k2 and k3, and
each of them induces a singularity for the integral. Consequently, there are three choices of
the incident wavenumber, namely kj (j = 1, 2, 3), and we term these waves as the first (for k1),
second (for k2) and third (for k3) choice. Therefore, the singular points for the j-th choice are
given by

Lij = cosh−1
[

ki
kj sinα

]
for i = 1, 2, 3,

and the corresponding integral can be suitably expressed as the sum of the principal value
integrals which can be evaluated by employing the method used in [5]. We will restrict ourselves
to first and third choice for evaluating the trapped frequencies.

3 NUMERICAL RESULTS
In this section, the results on trapping phenomena will be discussed in the blocking range
when both the currents are acting in opposite direction. Other choices of the currents will
be discussed during the presentation. The graphs are shown for the first and third choices of
the incident wavenumber. The non-dimensionalized positions of the cylinder and the water
depth are kept fixed at f = −1.01 and h = 6. The flexural rigidity of the floating ice and the
compressive force acting on it are kept invariant as D = 0.01 and Q = 1.5

√
D.

Figure 2: The surface plot of αmin and αmax for both the choices when the current varies.

The optimum range of α by varying both the opposite currents is shown with the help of
surface plots (figure 2). Considering the first choice, the trapped mode exists for α ∈ (0, 20◦)
for F1 = −0.4 and F2 = −1.0 (left panel). As we reduce the magnitude of F2, the range widens
and reaches the full range, i.e., α ∈ (0, 90◦). However, with a decrease in the magnitude of
F1, the lower limit of α increases and leads to a narrower α band. Hence, a lower magnitude
of F2 along with a higher magnitude of F1 is the favourable choice for getting the maximum
range of existence of the trapped modes at any value of α. While considering the third choice
(right panel), the lower bound of α remains constant at 0◦ and the upper bound monotonically
increases with a decrease in the magnitude of F1. However, when the magnitude of F1 decreases,
then αu starts bending and hence obtain maximal value for certain F2.

Based on the discussion of the range of α in figure 2, the frequency pattern for trapped
modes can be understood from figure 3. We fix the value of F1 at −0.2 and vary F2 from
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Figure 3: The range of trapped mode frequencies within the blocking range when F2 varies.

−1.0 to −0.2 to obtain the trapped modes frequencies. It can be clearly observed that when
F2 = −1.0, the trapped mode exists for both the choices of propagating modes confined within
a specific range of incidence angle α. With a decrease in the magnitude of F2, the trapped
frequency for the third propagating mode overlaps with the secondary blocking frequency and
dies out. However, the first trapped mode exists for a wider range of α, which also shrinks for
F2 = −0.2.
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