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Highlights

• The instability regions are re-drawn by ZE with kernels in a Hamiltonian form.
• The growth rates in arbitrary water depth by the HOS method and the discretized form of ZE are
summarized and the results agree well with each other in particular for the most unstable modes.

• There is a reduction of modulational instability with decreasing the depth and there is still modulational
instability in terms of k0h = 0.8, which leads to a strong amplitude growth.

1 Introduction
For two-dimensional modulational instability, a carrier wave can be perturbated with a pair of collinear sidebands
and the water depth plays an essential role. There is an evident threshold of the dimensionless water depth
k0h = 1.363 (k0 is the wavenumber of the carrier wave and h is the water depth), which was first found
by Benjamin (1967) and Whitham (1967), and confirmed by Janssen & Onorato (2007). As the result of
the finite water depth, the wave-induced current and mean surface elevation are generated, which weakens
the modulational instability and makes less focusing of the wave energy. Further more, it disappears when
k0h < 1.363 and hence the uniform wave train is stable.

However, for three-dimensional cases, a carrier wave is perturbated by a pair of oblique sidebands. Different
from the former, the modulational instability can be triggered even when k0h < 1.363. Benney & Roskes (1969)
indicated that the unstable regions are limited in a narrow and approximately straight domain in any water
depth except k0h = 0.38 where the domain reduces to a straight line. In addition, by using an integro-differential
equation of Zakharov (1968), Crawford et al. (1981) obtained the horn shape unstable region in the condition of
infinite water depth. Stiassnie & Shemer (1984) further studied the same topic with the same approach but in
finite water depth and the instability domain. The maximum growth rates were compared with those in McLean
(1982). The experiment by Toffoli et al. (2013) and the numerical simulations by Fernandez et al. (2014) also
confirmed the same conclusion and indicated that the modulational instability cannot sustain a substantial
amplitude growth for the relative water depth k0h < 0.8. The selected sideband is located at the angle of about
35◦ on the wavenumber plane, which is based on the nonlinear Schrödinger equation. The experimental results
also showed a larger limiting k0h because a dissipative process is involved inevitably.

In the present study, combined with theoretical analyses by the Zakharov integro-differential equation,
direct numerical simulations of the Euler equations are performed using a higher-order spectral method to
investigate the modulational instability in finite water depth, in particular for oblique sidebands. The instability
regions are also re-drawn by the Zakharov equation with kernels in a Hamiltonian form. Another objective is
to find out the threshold water depth where the modulational instability diminishes for oblique cases within the
scope of the Zakharov equation.

2 Theoretical Model
The Benjamin-Feir instability of Stokes waves can be considered as a special quartet or a degenerate case of
the four-wave resonant. The carrier wave is counted twice and satisfies k1 = k2 = (k0, 0). The two sidebands
k3 = k1 + (Kx,Ky) and k4 = k1 − (Kx,Ky) whose phases are shifted by −π/4 satisfy

2k1 = k3 + k4, |2ω1 − ω3 − ω4| < O(ϵ2), (1)

where ϵ is the wave steepness, kj are the wavenumbers and ωj are the angular frequencies.
According to Crawford et al. (1981), Stiassnie & Shemer (1984) and Mei et al. (2005), the theoretic analyses

are started by the discretized differential equations based on the well-known Zakharov equation (ZE),
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where Bj are the wave action amplitudes and T with different subscripts are the interaction kernels of ZE.
As only the short-time solution of the equation is concerned, it is reasonable to take the assumption that

the initial amplitudes of two sidebands are far less than that of the carrier wave (i.e., |B3|, |B4| ≪ |B1|). The
solutions to the equations linearized through the zeroth order and the first order can be obtained as

B1 = β1e
−iT1111|β1|2t, β1 = B1(0), (5)

B3 = β3e
−i( 1

2∆1134+T1111|β1|2+σ)t, β3 = B3(0), (6)

B4 = β4e
−i( 1
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where the relation between the wave amplitude aj and the wave action amplitude Bj satisfies aj = 1
π

√
ωj

2g |Bj |
and ∆1134 = 2ω1 − ω3 − ω4 is the detuning factor.

The eigenvalue σ is given as σ = (T3131 − T4141)β
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which is the essential criterion of modulation instability. If the value of D is positive, the wave train will be
stable and B3 and B4 will maintain the initial values. On the contrary, the growth rate is defined as the
imaginary part of σ, i.e., Im σ =

√
−D when D is negative, and B3 and B4 will increase exponentially over

time. Thus the growth rates in finite depth are able to form complete characterization.
A limitation for the application of ZE in finite depth is that the kernels with the form of T1111 and T1212

are non-unique. Fortunately, the former one has been resolved by Stiassnie & Shemer (1984) and Janssen &
Onorato (2007) and the expression of the latter one is given by Stiassnie & Gramstad (2009). The kernels
we use in the present work are consistent with those by Janssen & Onorato (2007) and Janssen (2009), which
are slightly different from those by Stiassnie & Shemer (1984) and Stiassnie & Gramstad (2009). And the two
expressions are identical under the condition of the exact four-wave resonant.

Another limitation is that for stationary wave steepness, ZE is not suitable for the particularly small water
depth, in which there will be an abnormal increase for the growth rate. Zakharov (1999) discussed that the
weakly-nonlinear theory has narrow frames of applicability in shallow water.

3 Direct Numerical Simulations
The numerical model with a higher-order spectral (HOS, Dommermuth & Yue (1987), West et al. (1987))
method is applied to validate the predictions of growth rate. According to the potential flow theory, the
velocity potential ϕ(x, z, t) in the fluid domain satisfies the Laplace equation ∇2

xϕ + ϕzz = 0. The nonlinear
kinematic and dynamic surface boundary conditions are rewritten as
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where ∇x is the horizontal gradient operator, ϕS(x, t) = ϕ(x, z = η(x, t), t) is the velocity potential of the free
surface, and W (x, t) = ϕz|z=η is the vertical velocity at the free surface. In addition, we assume a constant
water depth h and the vertical velocity at the bottom is zero, that is, ϕz|z=−h = 0.

The HOS method is a Fourier spectral collocation method (also called a pseudo-spectral method), by which
∇xη and ∇xϕ

S are able to be solved. As for W , a series of expansions in wave steepness ϵ is performed up to
the HOS order M = 3, which is chosen to capture the third-order non-linearity in the modulational instability.
In addition, a 4th-order Runge–Kutta time integration with ∆t = T1/32 is applied and there is no relaxation
period because the nonlinear initial conditions for the elevation and the velocity potential are applied. The
code for the HOS method is developed in house and a GPU acceleration algorithm is adopted to make it more
efficient (see Liu & Zhang (2019)).

In this study, we consider a square computational domain with periodic boundary conditions of Lx ×Ly =
50λ1×50λ1 (λ1 is the wavelength corresponding to k1) withNx×Ny = 1024×1024 to ensure enough nodes in one
wavelength and k1 = (1, 0) m−1 with λ1 = 6.28 m. Thus, the wavenumber resolution is dkx = dky = 0.02 m−1,
which allows us to accurately extract the changes of the carrier wave and sidebands. The initial surface and
velocity potential are obtained by superimposing the carrier wave (k0, 0) which propagates along the x direction
and two sidebands (k0 +Kx,Ky) and (k0 −Kx,−Ky). The amplitudes of perturbations are only one percent
of the carrier-wave amplitude which is denoted by a0 for a long steady increase.

4 Results
As results of Eq. (8) with the kernels by Janssen & Onorato (2007) and Janssen (2009), the unstable regions of
modulational instability from k0h = 0.8 to k0h = 1.78 and k0h = 100 (i.e., infinite water depth) are shown by
contour maps in Fig. 1 with the typical dimensionless wave steepness k0a0 = 0.10. The maximum growth rate
is marked by ♢. The threshold of the dimensionless water depth k0h = 1.363 can be clearly detected and the



values on the x-axis become zero when k0h < 1.363. As for three-dimensional cases, the unstable regions are
distributed in a relatively wide horn-like domain for k0h > 1.363 and along a narrow arc for k0h < 1.363. It is
worth noting that the second unstable region appears for k0h < 1.0, which is located at Kx/k0 > 0.8. It is also
reported by Stiassnie & Shemer (1984) and Gramstad & Trulsen (2011). This paper concentrates on the main
unstable region and the cases of the second unstable region are not included.

The cases for direct numerical simulations by the HOS method are marked in the Fig. 1 with △ and also
listed in the Tab. 1. These are the sidebands with the largest growth rate under the corresponding water depth
at relatively lower but reasonable resolution. It is caused by the limitation of the resolution of computational
domain and only the sidebands matching the resolution are selected for the convenience of wavenumber spectrum
analysis. Nevertheless, without loss of generality, the growth rates of the sidebands △ for the actual calculation
are almost the same as the prediction ♢ by ZE although the locations are slightly different from each other.

Figure 1: The non-dimensional growth rate G′ in different water depths for k0a0 = 0.10.

The detailed results are summarized in Tab. 1. For results by ZE, the growth rate G = Imσ is directly
calculated by Eq. (8). The dimensionless growth rate is defined as G′ = Im(σ)/ 1

2ω0k
2
0a

2
0. For results by HOS

method, the growth rate is estimated by data fitting using a least-squares method. The average amplitude
of the upper and lower sideband, which is normalized by the initial amplitude of the carrier wave, is used for
calculation. The length of the data is about 50T1. For example, the slope of 50T1 to 100T1 in Fig. 2 is considered
as the growth rate. It is found that the results by the HOS method are in good agreement with those by ZE
for all the cases. The maximum growth rate decreases with decreasing depth, which indicates the reduction
of the modulational instability. The most unstable mode occurs only in deep water when the sidebands are
collinear with the carrier wave, whereas in finite depth the region with an angle around 35◦ exhibits the strongest
modulational instability.

In Fig. 2, analyses in wavenumber space are performed and the amplitudes of two sidebands (the magenta
solid line for k3, the blue solid line for k4 and the black dash dot line for the average) and the carrier wave
(the black solid line) are plotted at each time step. The prediction of ZE is also plotted as the black dash line
for comparison. It can be seen from the figure that the amplitudes of the sidebands increase rapidly while the
amplitude of the carrier wave decreases. The slopes of the sidebands by ZE and the HOS method are almost
the same. The steady growth time of the sidebands (the straight line segments for the sidebands in Fig. 2)
increases with decreasing the depth. However, there is no significant difference for the maximum values that
the sidebands can reach (the first peak of the sideband growth curve) in different depths.

When modulation occurs, the energy of the carrier wave is transferred to the upper and lower sidebands.



Table 1: Cases of the numerical simulations.

Case k0h k0a0 Kx/k0 Ky/k0
G G′

ZE HOS ZE HOS

A1 100 0.10 0.18 0 0.0126 0.0127 0.8059 0.8078
B1 1.78 0.10 0.24 0.18 0.0094 0.0096 0.6198 0.6295
C1 1.363 0.10 0.24 0.18 0.0085 0.0086 0.5783 0.5883
D1 1.24 0.10 0.22 0.16 0.0079 0.0080 0.5497 0.5543
E1 1.0 0.10 0.26 0.18 0.0065 0.0066 0.4741 0.4805
F1 0.8 0.10 0.36 0.22 0.0051 0.0051 0.3998 0.4003

The amplitudes of two sidebands increase exponentially in the wavenumber space. In the real physical space,
the maximum free-surface elevation will increase with the time. The amplification of the wave amplitude is also
an appropriate criterion for assessing the modulational instability. Fig. 3 illustrates the temporal evolution of
the maximum wave elevation which is normalized by the initial amplitude of the carrier wave. The continuous
increase gives another evidence for the modulational instability. In addition, for deep water, the maximum wave
elevation can reach a relatively higher value in less time than that for the shallower water.
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Figure 2: Temporal evolution of the amplitudes of the carrier wave and sidebands in several different depths.
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Figure 3: Temporal evolution of the normalised maximum elevation of the free surface in several different depths.
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