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1 Introduction

The original weak-scatterer (OWS) hypothesis, pioneered by Pawlowski [1], assumes a vertical displace-
ment of the scattered wave elevation from the underlying incident wave, which leads to an inconsistency
when the surface-piercing structure has flares near the waterline. Thus, the predicted waterline position
using the superposition of the incident and scattered waves will separate from the surface of the structure,
particularly for incident waves with large amplitudes and structures with large flare angles. With this in
mind, we have re-derived the free-surface boundary conditions based on a generalized weak-scatterer (GWS)
approximation to avoid this inconsistency. The basic idea of GWS is that the fully nonlinear (FN) free-
surface conditions are linearized about the incident wave surface, but using a Taylor expansion along an
arbitrary direction which can be manually prescribed in practice according to the geometry of the structure.
In this way, we can precisely capture the waterline position on the structure at each time step of the solution.
Accordingly, expressions for the wave loads acting on the structure based on direct pressure integration are
also derived based on the same assumption.

2 Generalized weak-scatterer approximation

A Cartesian coordinate system Oxz is defined with its origin located at the mean water level and the
Oz axis oriented positively upwards. For a surface-piercing structure with a large flare, like a wedge or a
ship bow, it is reasonable to introduce a direction tangential to the structure’s surface to track the waterline
intersection. In this case, we assume that the total velocity potential and the free surface displacement (φ, r)
can be split into the incident component (φI , rI) and the scattered component (φS , rS), where rI = (xI , ηI)
and rS = (xS , ηS):

φ = φI + φS , r = rI + rS . (1)

Same as in the OWS hypothesis, we introduce a small parameter ϵ to denote the smallness of the
quantities associated with the scattered waves, and assume that φS/φI ∈ O(ϵ) and rSi /r

I
i ∈ O(ϵ), (i = 1, 2, 3),

where rIi and rSi represent position components of rI and rS , respectively.
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Figure 1: An illustration of wave-structure interaction problem within the frame of weak-scatterer approximation.

An arbitrary Lagrangian-Eulerian (ALE) approach is adopted to track the wave markers. On the instan-
taneous free surface, the kinematic and dynamic free-surface boundary conditions in the inertial reference
frame are expressed as:

δη

δt
=

∂φ

∂z
− (∇φ−V) · ∇η,

δφ

δt
= −gη − 1

2
∇φ · ∇φ+V · ∇φ. (2)

Inserting (1) into (2), taking the Taylor series expansion of the free-surface boundary conditions from the
incident wave along an arbitrary direction, and neglecting terms higher than the first order in ϵ, finally we
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obtain the free-surface boundary conditions for the scattered wave:

δηS
δt

=
∂φS

∂z
− (∇φI −V) · ∇ηS −∇φS · ∇ηI −∇

(
∂ηI
∂t

− ∂φI

∂z
+∇φI · ∇ηI

)
· rS at r = rI, (3)

δφS

δt
=− gηS − (∇φI −V) · ∇φS −∇

(
∂φI

∂t
+ gηI +

1

2
∇φI · ∇φI

)
· rS at r = rI. (4)

Here V is a prescribed velocity which is tangential to the boundary of the surface-piercing structure at the
waterline, meaning that V and rS are parallel to each other at the free-surface intersection. Away from
the structure, the direction of V is gradually changed to purely vertical. The unit direction vector of rS is
defined as lS = (l1, l2), and the vertical component of V is V2 = ∂ηI/∂t+V · ∇ηI for a fixed structure. The
relation between V and rS gives V = (l1V2/l2, V2) straightforwardly.

For the Neumann boundaries, a no-flux condition normal to the structure surface should be satisfied on
the instantaneous wetted body surface: ∂φS/∂n = −∂φI/∂n + Vb · n, while on the stationary seabed or
tank walls: ∂φS/∂n = 0. The governing equation for the scattered potential field is the Laplace equation
∇2φS = 0. Enclosed by the described mixed Dirichlet-Neumann boundaries, a BVP can be formulated and
solved.

The instantaneous pressure on the structure surface can be computed from Bernoulli’s equation:

P = −ρ(φt +
1

2
|∇φ|2 + gz). (5)

where ρ is the fluid density. Therefore, the hydrodynamic forces Fhydro = (f1, f2, f3) and moments Mhydro =
(f4, f5, f6) can subsequently be obtained by integrating the pressure over the structure’s wetted surface. The
integrals over the exact wetted body surface SWB are split into two parts: one is over the wetted body surface
SI
WB below the intersection between the body and the incident wave, and the other is introduced because

of the scattered wave:

fi = −
∫∫

SWB

Pni ds =−
∫∫

SI
WB

Pni ds−
∫∫

∆S
Pni ds, (6)

where ni are the six components of the generalized unit normal vector, (n1, n2, n3) = n, and (n4, n5, n6) =
rb ×n. Here n points into the fluid. The second term due to the scattered waves can also be separated into
two parts for convenience:

−
∫∫

∆S
Pni ds = ρ

∫∫
∆S

(
φt +

1

2
|∇φ|2

)
ni ds+ ρ

∫∫
∆S

gzni ds = Π1 +Π2. (7)

Since the integrand of Π1 is not a constant within the strip area ∆S but a function of rS , in order
to obtain the integral, taking the Taylor expansion of the integrand at the incident wave position at the
incident wave rI yields

Π1 =ρ

∫∫
∆S

([
φt +

1

2
[∇φ|2

]
at rI

+

[
∇
(
φt +

1

2
|∇φ|2

)
· (r− rI)

]
at rI

+O(ϵ2)

)
ni ds

≈ρ

∮
ΓI

rS

(
φt +

1

2
|∇φ|2

)
ni dΓ + ρ

∮
ΓI

1

2
r2S

[
∇
(
∂φI

∂t
+

1

2
∇φI · ∇φI

)
· lS
]
ni dΓ,

(8)

where ΓI indicates the waterline of the structure due to the incident wave. rS is the amplitude of rS with
the same sign as the vertical component of rS , and θ denotes the angle between the vector rS and the z-axis
in the inertial coordinate system so that ηS = rS cos θ. As for the second integral Π2,

Π2 =ρ

∫∫
∆S

gzni ds = ρ

∮
ΓI

∫ rS

0
g(ηI + zS)ni drdΓ = ρ

∮
ΓI

1

2
g(2ηIrS + r2S cos θ)ni dΓ. (9)

The hydrodynamic loads on the structure can be finally assembled as

fi =ρ

∫∫
SI
WB

(
φt +

1

2
|∇φ|2 + gz

)
ni ds+ ρ

∮
ΓI

rS

(
φt +

1

2
|∇φ|2 + gηI

)
ni dΓ

+ρ

∮
ΓI

1

2
r2S

[
∇
(
∂φI

∂t
+

1

2
∇φI · ∇φI

)
· lS + g cos θ

]
ni dΓ.

(10)

It can be observed that the magnitude for the main wetted body surface integral is of O(1), for the first
waterline integral is of O(ϵ) and for the second waterline integral is of O(ϵ2), respectively.



3 Stability analysis

A fixed trapezoidal cylinder with large flare angle subject to an incident wave is considered. By observing
the GWS free surface boundary conditions in Eqn.(3) and (4), it can be seen that there exist convective
terms, which make the condition similar to that for a seakeeping problem for a ship with forward speed.
When the forward speed becomes significant, instability may occur if an explicit time-integration scheme is
applied without special treatment of the convective terms. Here, a linear matrix-based eigenvalue stability
analysis is performed to understand the stability properties of the numerical algorithms. We consider the
2D linearized kinematic and dynamic GWS free-surface boundary conditions containing the x-convective
terms in matrix form:

δ

δt

(
ηS
φ̃S

)
=

(
−Ux

∂
∂x

∂
∂z

−g −Ux
∂
∂x

)(
ηS
φ̃S

)
, (11)

where the convective velocity is defined as Ux = ∂φI
∂x − Vx, ηS is the scattered wave elevation, and φ̃S =

φS(x, 0, t) is the scattered velocity potential at the mean water level. The space-discretized form of Eqn. (11)
can be written as

δ

δt

(
{ηS}
{φ̃S}

)
=

(
[U ][Df

x ] [Θz]
−g[I] [U ][Θx]

)(
{ηS}
{φ̃S}

)
⇒ δ{q}

δt
= [J ]{q}. (12)

Here {q} = [ηS,1, ηS,2, · · · , ηS,Nm , φ̃S,1, φ̃S,2, · · · , φ̃S,Nm ]
T = [{ηS}; {φ̃S}], where Nm is the number of wave

markers. [I] is an identity diagonal matrix, while [U ] is a diagonal matrix containing the convective velocities

of the wave markers. The matrix operator [Df
x ] differentiates ηS with respect to x, whose non-zero elements

are the weighting coefficients of a specific finite difference scheme. The global equation system is recalled

[A]{φS} = {b} =̇ [Q]{φ̃S}, (13)

where [Q] is an operator matrix to distribute the free surface boundary conditions {φ̃S} into the correspond-
ing positions of the global boundary value vector {b}. By doing this, after some simple manipulations, we
can get expressions for [Θx] and [Θz]:

[Θx] = [Dc
x][A]−1[Q], [Θz] = [Dc

z][A]−1[Q], (14)

in which [Dc
x] and [Dc

z] are operator matrices to take the x and z derivative of {φ̃S} at z = 0.
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Figure 2: Eigenvalues of a 3rd-order upwind-biased scheme for the wave steepness kH = 0.2. Zoomed-in

view near the origin is also displayed in the right plot.

For the discretization of the free-surface boundary conditions discussed above, the eigenvalues of the
matrix [J ] can be computed numerically. To guarantee stability, all the eigenvalues of matrix [J ] multiplied
by the time step ∆t must be inside the stability region for a given time stepping scheme. In our study, the
4th-order explicit Runge-Kutta (RK4) scheme is used.

There are two convective derivatives in both the dynamic and kinematic free-surface conditions, i.e.
∂φS/∂x and ∂ηS/∂x, which are calculated by a 3rd-order upwind-biased scheme (UBS) to ensure stability. At
Neumann boundaries, we require ghost nodes outside the fluid domain to calculate the convective derivatives.
If upwind markers on the free surface can be found, then extrapolation is used; otherwise, a Neumann
boundary condition is imposed to compute the values on the ghost points. Here a linearized Neumann



boundary condition is provided as reference:

∂ηS
∂n

=
1

g

∂

∂t

(
∂φI

∂n

)
. (15)

In general, instability issues come mainly from the wave markers on the lee side of the structure, but the
scheme is applied everywhere. The stability eigenvalues for the 3rd-order upwind-biased scheme (UBS) are
shown in Fig. 2. It can be seen from the zoomed-in plot that all eigenvalues are inside the stability region
of the RK4 scheme. More details of the stability analysis can be found in [3].

4 Numerical application

A fixed trapezoidal ship section with a flare angle θ = 30◦, semi-submerged in regular waves is studied
here. The flare angle θ is defined as the angle between the side wall of the section and the vertical direction
in the inertial coordinate system Oxz that is located at the middle of the tank at the mean water level.
The wave tank has a length L = 8Lw, the water depth is h = Lw, and the length of the damping zone is
Ldamp = 2Lw. The incident wavelength is set as Lw = 2.5 m in our simulations and the wave period is
T . The wave height H = 0.11 m. The incident wave is generated by the stream function theory [2]. The
bottom breadth of the trapezoidal section is B = 0.2Lw and the draught is d = 0.1Lw.

A detailed demonstration of the dynamic fluid pressure distribution over the instantaneous wetted body
surface, and the wave profile close to the waterline points for this fixed trapezoidal ship section in waves
with H = 0.11 m is presented in Fig. 3. The snapshots represent different time instants during the 31st wave
period. Generally speaking, the consistency between the GWS and FN models [4] is deemed satisfactory
and promising for both the wave elevation and the pressure distribution. Note that the pressure distribution
of the GWS solutions in Fig. 3 results from the intersection between the incident wave and the structure,
corresponding to the mean wetted body surface integral in Eqn. (10). The difference between the OWS and
GWS can not be demonstrated here due to the lack of space and will be presented during the workshop.
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Figure 3: Dynamic pressure distribution and free surface elevation near waterline on the body at different time

instants. The analysis of the GWS solutions (red) is compared with the FN solutions (black). The corresponding time

instants are indicated with red and black cross in the time series of horizontal force.
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