
Steady-state motion of a load on an ice cover with linearly variable
thickness in a channel

Konstantin Shishmarev1,3, Kristina Zavyalova1 and Tatyana Khabakhpasheva2

1Department of differential equations, Altai State University, Barnaul, Russia
2Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia

3E-mail: shishmarev.k@mail.ru

1 INTRODUCTION AND FORMULATION OF THE PROBLEM
The main part of the flexural-gravity wave research was carried out for ice covers of infinite
extent. However, majority of the ice tanks, where scientific and technical experiments with
ice cover are conducted, have finite dimensions and rectangular cross-sections. For this reason,
studying the features of waves in channels and how they differ from waves in unbounded sheets
is highly important. Under natural conditions, the ice cover is not homogeneous. Due to
different reasons its thickness, density and stiffness are not constant. This paper considers the
case of an ice cover whose thickness varies linearly, and ice density and stiffness are assumed
to be constant. Similar problem for an ice plate with constant thickness was studied in [1], [2].

The response of a viscoelastic ice cover to a load moving along a frozen channel is considered.
The channel is of rectangular section with a finite depth H (−H < z < 0) and a finite width
2b (−b < y < b), the channel is of infinite extent in the x direction. Here Oxyz is a Cartesian
coordinate system. The problem is studied within the linear theory of hydroelasticity (see, e.g.,
[3]). Liquid in the channel is inviscid, incompressible and covered with ice. The ice cover is
modeled by a thin viscoelastic plate with given constant density ρi and rigidity D(y), where
D(y) = Eh3

i (y)/[12(1 − µ2)], E is the Young’s modulus for ice, µ is the Poisson’s ratio for ice
and hi(y) is variable thickness of the ice cover. A Kelvin–Voigt model of viscoelastic ice is
used in this study. The constitutive equation of this model is σ = E(ϵ + τ∂ϵ/∂t), where σ is
the stress, ϵ is the strain, τ is the so-called retardation time and t is the time. Ice oscillations
caused by a load moving along a center line of the channel with constant speed U . The load
is modeled by a localized smooth pressure distribution. Flow beneath the plate caused by ice
deflections is potential.

The ice deflection w(x, y, t) satisfies the equation of a thin viscoelastic plate
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where L is a differential operator,
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∆2 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4, M(y) = ρihi(y) is the mass of the ice plate per unit
area, P (x, y, t) is the external pressure and p(x, y, 0, t) is a liquid pressure at the ice/liquid
interface. The external pressure P (x, y, t) moves along the central line of the channel with
constant magnitude P0 and is described by

P (x, y, t) = −P0P1 ((x− Ut)/b)P2 (y/b) (−∞ < x < ∞, −b < y < b), (2)

P1(x̃) =
(
cos(πc1x̃) + 1

)
/2 (c1|x̃| < 1), P1(x̃) = 0 (c1|x̃| ≥ 1), x̃ = (x− Ut)/b,



P2(ỹ) =
(
cos(πc2ỹ) + 1

)
/2 (c2|ỹ| < 1), P2(ỹ) = 0 (c2|ỹ| ≥ 1), ỹ = y/b,

where c1 and c2 are non-dimensional parameters of the external load characterizing the size of
the pressure area. The hydrodynamic pressure p(x, y, 0, t) at the ice-liquid interface is given by
the linearised Bernoulli equation,

p(x, y, 0, t) = −ρℓφt − ρℓgw (−∞ < x < ∞, −b < y < b), (3)

where g is the gravitational acceleration, ρℓ is the density of the liquid and φ(x, y, z, t) is the
velocity potential of the flow beneath the ice cover. The velocity potential φ(x, y, z, t) satisfies
Laplace’s equation in the flow region and the boundary conditions

φy = 0 (y = ±b), φz = 0 (z = −H), φz = wt (z = 0). (4)

The ice cover is frozen to the walls, which is modeled by the clamped conditions

w = 0, wy = 0 (−∞ < x < ∞, y = ±b). (5)

The term with τ∂/∂t in the equation of viscoelastic plate (1) describes the damping of ice plate
oscillations, so they decay far away from the moving load, where |(x− Ut)| → ∞.

One case of linear change in the ice thickness is considered: the ice thickness varies sym-
metrically across the channel, being the smallest at the center of the channel and the largest at
the channel walls. The main parameters of the thickness are its average h∗, minimum h0 and
maximum h1 values. Then hi(y) can be written in the form:

hi(y) = h0(1 + α1|y/b|), α1 = (h1 − h0)/h0, hi(0) = h0, hi(±b) = h1. (6)

The formulated problem is solved in non-dimensional variables denoted by tilde. The half-
width of the channel b is taken as the length scale, the ratio b/U as the time scale, and the
pressure magnitude P0 as the pressure scale. The non-dimensional depth of the channel H/b is
denoted by h. The moving coordinate system (x̃, ỹ, z̃) with the origin at the centre of the load
is introduce by

ỹ = y/b, x̃ = (x− Ut)/b, z̃ = z/b, t̃ = Ut/b.

We are concerned with a steady-state solution in the moving coordinate system,

w(x, y, t) = w(x̃L+ Ut, Lỹ, t) = wsc w̃(x̃, ỹ),

φ(x, y, t) = φ(x̃L+ Ut, Lỹ, t) = φsc φ̃(x̃, ỹ, z̃),

where wsc and φsc are the scales of the ice deflection and the velocity potential correspondingly.
The scales are chosen as wsc = P0/(ρℓg) and φsc = (UP0)/(ρℓg). The scale hsc of the ice

thickness, h̃i(ỹ) = hi(y)/hsc, is equal to h0.
In the non-dimensional variables the problem reads (tildes are omitted further)
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= hFr2φx − P1(x)P2(y) (−∞ < x < ∞, −1 < y < 1, z = 0), (7)

∇2φ = 0 (−∞ < x < ∞, −1 < y < 1, −h < z < 0), (8)

φz = −wx (z = 0), φy = 0 (y = ±1), φz = 0 (z = −h), (9)

w = 0, wy = 0 (y = ±1), w, φ → 0 (|x| → ∞). (10)



Here β = D∗/(ρlgb
4), D∗ = Eh3

sc/[12(1−µ2)], ε = (τU)/b, m = (ρihsc)/(ρℓb) and Fr = U/
√
gH

is the Froude number.
The solution of the problem (7) – (10) depends on seven non-dimensional parameters h, m,

β, ε, Fr, c1, c2 and on the non-dimensional ice thickness hi(y). These parameters describe the
aspect ratio of channel, characteristics of ice and of the applied load. We shall determine the
deflection w and strain distribution in the ice cover for given values of these parameters.

METHOD OF THE SOLUTION AND DISCUSSION

The coupled problem (7) – (10) is solved with the help of the Fourier transform in the x
direction. The plate equation (7) provides

β(1− iξε)
[
h3
i (w

F
yyyy − 2ξ2wF

yy + ξ4wF ) + 6h2
ihi,y(w

F
yyy − ξ2wF

y ) + 6hih
2
i,y(w

F
yy − µξ2wF )

]
+

+(1−mhFr2ξ2hi)w
F = iξhFr2φF − P F (ξ, y),(11)

where
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wF (ξ, y)eiξxdx. (12)

The Fourier transform is also applied to the rest of the equations in (7) – (10). The solution
for the Fourier image of the ice deflections wF (ξ, y) is sought in the form of an infinite series
of normal vibration modes of an elastic beam taking into account the variable thickness of
ice. In the linear case, these modes are described by Bessel functions (see, i.e., [4]) and are
orthogonal with a weight. After determining the modes, the principal coordinates in the series
for the Fourier image of ice deflections are determined. These principal coordinates depend
on the Fourier transform parameter ξ and will be complex-valued due to the coefficients in
the equation (11). The Fourier image of the flow velocity potential, which is appeared in
(11), is determined by the method of separation of variables from the corresponding boundary-
value problem taking into account the kinematic condition. In the end, the dimensionless ice
deflections w(x, y) are defined as the inverse Fourier transform applied to wF (ξ, x) (second
equation in (12)). Number of the mods is reduced to a finite number Nmod. The limits of
integration in the inverse Fourier transform are limited and the resulting integrals are calculated
numerically for each mode. The convergence of the numerical solution is checked by varying
the number of modes and the integration parameters. For a plate of constant thickness, the
solution method is the same as the method used in [1].

Calculations of the ice response were carried out for parameters of the problem corresponding
to the experimental ice tank at the Sholem Aleichem Amur State University in Birobidzhan
(see [5]): H = 1 m, 2b = 3 m, ice thickness in the tank is chosen to be equal to 0.0035 m.
The parameters of ice and liquid in the calculations were: ρi = 917 kg/m3, ρℓ = 1024 kg/m3,
µ = 0.3, E = 4.2 · 109 Pa, τ = 0.1 s. Minimum and maximum values of the ice thickness and
speed of the load U change in the calculations. The average thickness h∗ in all calculations did
not change and is equal to 0.0035 m.

The shape of ice deflections significantly depends on the speed of the load. It is known
that there is an infinite number of dispersion relations in a channel and, accordingly, an infinite
number of hydroelastic waves possibly propagating along a channel. A hydroelastic wave will
propagate from the moving load with its speed if a phase speed equal to the load speed is
existed. Long waves propagate behind, and short ones in the front of the load. However, a
change in the ice thickness leads to a change in the characteristics of hydroelastic waves and,



therefore, the combination of waves propagating from the load can be different. Two minimum
phase speeds for the considered channel are shown in Figure 1a. The solid lines show the results
for a plate with constant thickness hi = 0.0035 m, the dashed lines show the results for the
plate with linear thickness for h0 = 0.002 m, and the dotted lines show the results for the plate
with linear thickness for h0 = 0.001 m. For example, at a load speed U = 2 m/s, the first wave
(for the first minimum phase speed) always propagates from the load, but the presence of the
second wave depends on the change in the ice thickness. In the presented case, such a wave
exists only for h0 = 0.001 m.

Dimensionless ice deflections along the center line of the channel are shown in Figure 1b.
The solid thick line shows the ice deflections for a plate with constant thickness h∗ = 0.0035 m,
the thin solid line – for a plate with variable thickness h0 = 0.002 m and the dotted line – for
h0 = 0.001 m. Waves in front of the load are not observed due to the strong damping effect.
Amplitude of the waves behind the load increases together with an increase in the change in
the ice thickness. It is seen that the length of the observed waves propagating behind the load
increases and the effect of damping decreases.

The main focus of the study is on the effect of the non-uniform ice thickness on the ice
deflections and strain distribution. More detailed numerical results will be presented at the
Workshop.

Figure 1: Phase speeds of periodic hydroelastic waves propagating in the channel (a). The ice
deflections along the center line of the channel for U = 2 m/s (b).
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