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HIGHLIGHTS

� We present a numerical wave flume based on a higher-order Moving Particle Semi-Implicit
Method (NWF-MPS).

� We introduce a novel artificial viscosity term to prevent particle clustering and to reduce
spurious numerical oscillations.

� The model is used to successfully reproduce waves of engineering interest in linear and
nonlinear regimes, using fewer particles than needed by other Lagrangian methods.

1 INTRODUCTION
The Moving Particle Semi-Implicit Method is a meshless Computational Fluid Dynamics (CFD)
model based on a Lagrangian description of the fluid flow. In Lagrangian models, the fluid is
discretised into computational particles, which act as calculations points where the hydrody-
namic quantities (such as velocity and pressure) are calculated.

Applications of particle based models to wave dynamics date back to three decades ago,
when the Smoothed Particle Hydrodynamics (SPH) method, originally developed in the 1970’s
for problems in astrophysics, was extended to solve free-surface flows [1]. The development of
MPS started much later, around the beginning of this century, as an extension of the finite
volume method [2]. MPS has several advantages as compared to SPH, such as a simplified
approach to spatial discretisation and a lower sensitivity to the kernel choice [3].

Several authors have proposed MPS applications to water waves, including wave breaking,
wave-ship interaction and landslide tsunamis (see [3, 4] and references therein). However, there
is still lack of systematic MPS modelling of design waves in a numerical wave flume (NWF).

Here we report novel results stemming from the recent work of [3], in which a higher-order
MPS model was developed to reproduce linear and nonlinear waves.

2 NUMERICAL MODEL
We consider a viscous and weakly compressible fluid flow governed by the continuity and Navier-
Stokes equations, respectively

Dρ

Dt
+ ρ∇ · u = 0, (1)

and
Du

Dt
= −1

ρ
∇P + ν∇2u + g. (2)



In the latter, D/Dt is the Lagrangian derivative, ∇ = (∂/∂x, ∂/∂y)T is the nabla operator, ρ
is density, P is pressure, ν is kinematic viscosity and g = (0,−g)T , g = 9.807 ms−2 is gravity.
Following [5, 6, 7], a weakly compressible formulation is used for the density, so that

ρ = ρ0 +
dρ

dP
dP, (3)

where ρ0 is the constant ambient density and c = (dP/dρ)1/2 is the speed of sound in water.

2.1 MPS Formalism
The MPS method solves a discretised form of the governing equations (1)–(2), calculated at
particle i at the k-th instant tk. This is achieved by using a weighted average over all the
neighbouring particles j = 1, ..., Ni, where the weight function is given by

w(r, re) =

{
re/r − 1 if r < re

0 if r ≥ re
. (4)

In the latter, re is an effective radius of interaction. Summing the weight functions calculated
at all the neighbouring particles of the i-th target particle gives the particle number density

ni =

Ni∑
j 6=i

w (rji, re) , (5)

where rji = rj − ri, rji = |rji|, and ri is the position of particle i.

2.2 Numerical Solution
The governing equations are then solved numerically using a predictor-corrector scheme, where
the ith particle velocity ui is first calculated at an intermediate step t∗, without considering
the pressure gradient:

u∗i = uk
i +

(
ν
〈
∇2u

〉k
i

+ g
)

∆t. (6)

The value is then corrected by accounting for the pressure contribution:

uk+1
i = u∗i −

1

ρ
〈∇P 〉k+1

i ∆t, (7)

where ∆t is the time discretisation. Eq. (7) is fully determined once the pressure is known.
The pressure solves the Poisson equation

− 1

ρ0

〈
∇2P

〉k+1

i
+

α

∆t2
P k+1
i =

n∗i − 2nk
i + nk−1

i

n0∆t2
+B

nk
i − nk−1

i

n0∆t
+ Γ

nk
i − n0

n0
, (8)

where α = 1/(ρc2), B = 500, Γ = 50, 000 as recommended by [8]. In (8) the Laplacian is given
by 〈

∇2P
〉k
i

=
4

λ0n0

∑
j 6=i

(
P k
j − P k

i

)
w (rji, re) , (9)

where

λ0 =
1

n0

∑
j 6=l

(
r0jl
)2
w
(
r0jl, re

)
(10)



is a weighted average at time t = 0, and l is an internal fluid particle. Substitution of (9) in (8)
yields a linear system for the P k

i ’s. Once the pressure is known from solving (8), the pressure
gradient in (7) is calculated with the minimum pressure P̂ k+1

i in the neighbourhood of the i-th
particle:

〈∇P 〉k+1
i = C−1i ·

(
1

n0

Ni∑
j 6=i

P k+1
j − P̂ k+1

i(
r∗ji
)2 r∗jiw

(
r∗ji, re

))
, (11)

where the 2× 2 matrix Ci is given by

Ci =
1

n0

Ni∑
j 6=i

r∗ji
r∗ji
⊗
(
r∗ji
)T

r∗ji
w
(
r∗ji, re

)
, (12)

see [3, 8, 9]. To prevent particle clustering and tensile instability, we add an additional viscous
term to the predictor step:〈

Du

Dt

〉k

i

=
δ c

n0

Ni∑
i 6=j

(
uk
ji · rkji(

rkji
)2

+ 0.01 r2e

)(
re
rkji

)2
rkji
rkji
, (13)

where δ is an artificial viscosity parameter.
Appropriate boundary conditions must be applied on the free surface and at the solid

boundaries. On the free surface, we request that the pressure be atmospheric, i.e. P = 0. In
other words, we only consider the excess pressure over the atmospheric value. On the solid
boundaries, we request a no-slip condition, so that the velocity is zero at boundary particles.
Waves are generated using a numerical wavemaker at the left end of the flume, based on a
dynamic boundary method (DBM). For more details on the implementation of those conditions
into the computational algorithm, we refer interested readers to [3].

3 APPLICATIONS
The NWF-MPS model has been validated with respect to available analytical and experimental
data. An extensive validation exercise, including detailed convergence studies, is available in [3].
Here we report an application of the above model to nonlinear wave propagation in a channel.
More applications, including random seas and highly nonlinear dynamics, will be presented at
the Workshop.

Figure 1 shows the time series of second-order Stokes waves generated in the flume, compared
with Madsen’s analytical formula [10]. The wavemaker generates a first-order component and a
second-order bound wave, which is known to steepen the crests and broaden the troughs. The
flume is 15 m long and 0.64 m deep, the wave height is 0.15 m and the period is 2 s. To prevent
unwanted reflections from the end wall of the flume, a relaxation zone has been introduced at
the end of the tank. The total number of particles is 42,236 and the time step is 0.001 s.

There is very good agreement between the analytical and numerical data. The correlation
coefficient is R = 0.988 and the root mean square error is E = 0.01. We remark that a similar
configuration was studied by [11] with an SPH solver. Interestingly, [11] obtained similar
convergence results, but with an order O(105) particles, as opposed to O(104) needed by the
NWF-MPS model.

4 CONCLUSIONS
We presented a novel Numerical Wave Flume based on a higher-order Moving Particle Semi-
Implicit method (NEW-MPS). A peculiar aspect of the model is the addition of an artificial
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Figure 1: Comparison between MPS data and Madsen’s analytical formula

viscosity term that prevents tensile instability and particle clustering, thus allowing to prop-
agate waves even at large times. The model is able to reproduce design waves of engineering
interest, such as second-order Stokes waves. Further examples on random sea states and wave-
structure interactions will be presented at the Workshop.
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