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Highlights
We develop and implement an efficient multiple scattering model to study the wave-induced
breakup of sea ice floes. We use it to observe the emergence of a floe size distribution after
repeated breakup events. We find the resulting distribution is right-skewed and better approx-
imated by a lognormal model than the often used Pareto model.

1 Introduction
Sea ice is a distinctive feature of both polar oceans. By drastically altering the ocean surface
albedo and interrupting the fluxes of matter, kinetic energy, and thermal radiation between
oceans and atmosphere, it has an extensive impact on their circulations and the Earth’s climate.
The marginal ice zone (MIZ) is the transition belt between an ice-free ocean and the pack ice.
It features a collection of ice floes of varying sizes, distinguishing it from a continuous ice cover,
and is notably affected by waves. The shape of this floe size distribution (FSD) has been an
active topic of research for decades [1]. Wave activity is one of the drivers of the FSD evolution
which, in turn, controls wave propagation. Smaller floes are more sensible to melt, and lower ice
concentration allows waves to propagate further into the MIZ, introducing a positive feedback
loop. Therefore, representing the FSD in global climate models is necessary to improve their
accuracy and enhance their long-term forecast capabilities.

Remote sensing observation of floe sizes have suggested the FSD follows a Pareto (power law)
distribution [1, 2]. This led to its adoption in various modelling studies. However, recent field
observations [3, 4], laboratory experiments [5, 6] and numerical models [7, 8] propose contrasting
distributions. The role of wave activity in the emergence of the Pareto distribution [3], and
even the validity of this statistical model [9, 10], are unclear. In a recent modelling study [11],
we combine FSDs obtained under monochromatic forcings to simulate the FSD resulting from
a wave spectrum. We find the lognormal distribution is a strong parametric alternative to the
Pareto distribution. In this abstract, we show that this model is also appropriate for the FSD
produced by repeated breakup under polychromatic wave forcing.

2 Mathematical model

2.1 Wave scattering

Our model is based on linear water wave theory. We consider the scattering of surface gravity
waves propagating in the x direction, in a two-dimensional fluid domain of constant depth H,
by an array of ice floes modelled as visco-elastic floating plates [12] with free edge boundary
conditions. Floes are non-overlapping so that individual floes are separated by open water,
delimiting homogeneous sub-domains. Floe j is identified by the coordinate of its left edge, xj,
and its length, Lj. This geometry is illustrated on Figure 1. The fluid velocity derives from a
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Figure 1: Geometry of the model at rest.

scalar, time-harmonic potential Φ solution of Laplace’s equation. We further assume separation
of space and time variables so that Φ = Re [φ (x, z) exp(−iωt)] with ω a prescribed angular
frequency. We note g the acceleration of gravity, D the floes flexural rigidity, h their thickness,
ρ their density, γ their viscosity, ρw the fluid density. The ensuing boundary conditions on the
fluid top surface and at the impervious seabed lead to the dispersion relations
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with respective roots kw and kf in respectively open water and ice-covered sub-domains.
The potential φ is expanded onto these wave modes in every sub-domain, and the expansion

coefficients are determined to ensure continuity of pressure and velocity across the horizontal
interfaces between adjacent sub-domains. It fully determines the spatial part of Φ in the whole
domain. More details on the solution method can be found in [11].

2.2 Breakup parametrisation

Strain is often used to parametrise wave-induced breakup [13]. Here, we consider the maximum
strain undergone by each floes. We use the plane stress approximation so that for a given ice
floe, this maximum strain, in absolute value, is located on either top or bottom surface of the
floe. The motion of the bottom surface is derived from the wave field, fully characterised by φ,
so that
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Our model solves for the scattering of a monochromatic wave. The strain field undergone by
the floes is a consequence of this monochromatic forcing. To estimate the strain field resulting
from a developed sea, we introduce the theoretical Pierson-Moskowitz spectrum
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where c1 = 8.1 × 10−3, c2 = 3.24 × 10−2 are non-dimensional constants. This spectrum is
parametrised by the significant wave height Hs = 4

√∫ +∞
0

S(ω)dω. Using the superposition
principle, the strain under such a forcing can be written as
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where the bounds ωmin, ωmax are used for numerical integration, ensuring we capture a significant
part of the spectrum, Equation (4) being evaluated on 200 equally spaced angular frequencies.

As in [11], we set floe j to break when maxx′∈[0,Lj ] εj (x′) > εc where εc is an empirically
determined strain threshold. We situate the breakup point at xb = argmax εj so that a floe of
length Lj breaks into two floes of length xb and Lj − xb.

2.3 Numerical experiment

Our experiment is summarised by the following steps:

1. The domain is initialised with a single, semi-infinite floe.
2. The scattered wave field is determined for 200 frequencies between ωmin and ωmax.
3. The ensuing strain field is derived from Equation 4. All floes meeting the breakup condi-

tion are split and the domain updated.
4. Steps 2 and 3 are repeated until none of the floes break.
5. The resulting finite lengths are recorded.

To account for wave dispersion, at each iteration individual waves are assigned a phase sam-
pled uniformly in [0, 2π). Additionally, after every breakup event floes are assigned random new
locations, preserving their order, to enforce they do not overlap. These sources of randomness
impact the resulting FSD. Therefore, we run the same simulation several times, to obtain an
ensemble of FSDs.

3 Preliminary results and conclusions
We investigate the behaviour of the model under small-amplitude wave forcing, setting Hs =
1 m. The ice properties are set to h = 1 m, γ = 20 Pa s m−1, εc = 4 × 10−5. The resulting
distributions are right-skewed. We average them over 40 model realisations. Specifically, these
40 sets of floe lengths are assembled into a single dataset, which is equivalent to averaging count
histograms computed on the same bins. We estimate, by maximum likelihood, parameters for
a Pareto distribution (following a common assumption in wave–sea ice modelling) and for a
lognormal distribution. In Figure 2, we compare these parametric distributions to a kernel
density estimate of the FSD.

Even though the lognormal distribution does not perfectly fit the data, especially for larger
floe lengths, it is a better match than the Pareto distribution. The predicted mode of a Pareto
distribution is the smallest admissible floe size, while our empirical distribution clearly is not
monotonic. This reinforces our recent modelling findings [11] and suggest a reappraisal of the
de facto power law assumption adopted in the modelling community [14, 15].

The polychromatic parametrisation used here differs from the one used in [11]. The results
are qualitatively similar but differ quantitatively, as shown in Figure 2. It is not clear which
one of these parametrisations has more physical significance. Additional observational data
is needed to confirm or invalidate these statistical models. We do not attempt at this stage
to evaluate the impact of empirical parameters such as εc or γ on these results. This will be
discussed during the presentation.



0 20 40 60 80 100
Floe length (m)

0.00

0.02

0.04

0.06

0.08

0.10
De

ns
ity

 (m
1 )

KDE
Lognormal
Pareto

Lognormal [11]

Figure 2: Average FSD over 40 model realisations. Two non-parametric density estimates (histogram, kernel
density) are compared to two parametric models. The histogram bin width is 2m. The lognormal fit to a similar
configuration, obtain by combining monochromatic FSDs [11], is added for comparison.
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