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1 Introduction

We are concerned with motion of a high-speed vessel that operates in close proximity of an ice field.
The presence of the floating ice sheet changes the hydrodynamic forces acting on the vessel. The
waves generated by the ship may break the ice near its edge.

In the present study, the ice is continuous with constant thickness and identical material prop-
erties in all directions at every point. The ice is modeled as a thin elastic semi-infinite plate. The
rest of the water surface is free of ice. The ship moves in open water of finite depth, see Fig. 1. The
flow generated by the ship is nonlinear and potential. Viscous and surface tension effects are not
included in the present model. The problem is challenging because the moving vessel causes the ice

Figure 1: Sketch of the problem.

deflection which in turn modifies the vessel motions. The problem is coupled, generally speaking.
The coupling is expected to be weak if the vessel moves far enough from the ice edge. We shall
find the conditions of ice and the vessel motion where the presence of the ice field affects the vessel
motions.

The forces acting on the ship and the ship motions are computed by the 2D+t approach. Within
this approach the three-dimensional flow is approximated by several two-dimensional earth fixed
flow problems. As the ship moves forward it causes unsteady flow in each cross-plane, which is
solved using a boundary element method based on potential theory. General requirements for
the validity of 2D+t theory are that the ship hull is slender and moves fast. Corrections are
typically needed at the transom stern as the physically required drop to atmospheric pressure is
not captured by the 2D+t approximation. For the ship moving in open water of constant depth,
the flow is symmetric with respect to the symmetry plane of the ship. If the ship moves along
either a vertical wall or an ice edge, then the flow is not symmetric and there are forces acting on



the ship in the transverse direction. Disturbances generated by the ship in the elastic ice propagate
both from the ice edge, which are consistent with the 2D+t approach, and along the edge, which
leads to interaction between the cross-planes.

In case of open water and constant forward speed of the ship, it is sufficient to use a single
cross-plane to approximate the three-dimensional wave field because the temporal development of
the flow in a earth fixed cross-plane can be directly translated to the spatial distribution of the
wave field along the ship axis. This is also the case if the ice sheet is modeled by a rigid plate of
constant thickness, as there is no interaction between the respective cross planes If the ice sheet is
modeled as elastic, then all cross-planes need to be modeled simultaneously. This is comparable to
previously published problems with the ship moving in incident waves, where interaction between
the flows in the cross planes is implied by the unsteady ship motion [1; 2]. However, in our problem,
it is not clear how to describe the deflection of the ice sheet within the 2D+t approach, which does
not account for the hydroelastic waves propagating in the direction of the ship motion.

Figure 2: Boundary conditions in a cross plane for the BEM 2D+t (a) and 2D+t with the non-local
boundary condition on the fictitious vertical boundary (b).

The idea of the present study is to use the domain decomposition method dividing the flow
domain into the domain of open water, y < 0, where the ship moves, and the domain covered
with ice, y > 0. We model the flow in the ice covered region and the ice deflection caused by
the ship moving near the ice edge as linear and match the velocity potential in the ice covered
region with the potential of nonlinear flow in the open water region at a fictitious boundary shown
in Fig. 2 by the vertical dashed line. To this aim, we shall solve the linear problem in the ice
covered region, and find a non-local relation between the velocity potential under the ice and its
normal derivative at the fictitious vertical wall at the ice edge. This relation is suggested to use
as the boundary condition for the non-linear problem in the open water region with the ship. The
boundary element method, which is used to solve the flow in each cross-plane for the open-water
region y < 0, incorporates fully non-linear free surface boundary conditions. This enables it to
capture important flow effects associated with high speed ships such as spray evolution and flow
separation at chines. Details on the implementation can be found in [1]. Due to the potential flow
assumptions made for the flow solver, viscous effects are neglected.

This approach is tested first for the rigid ice model, where the 2D+t approach is well applicable
with a single cross plane needed for computations. The rigid-ice plate can be included in the
boundary element method without using the 3D or 2D non-local boundary condition at y = 0.



In this way we can investigate the applicability of the non-local boundary condition and gain
experience of working with this condition. We consider using the boundary element method for
both open water and ice-covered regions as too extensive. Note that non-local boundary condition
at y = 0 does not include the memory effect for the rigid ice model.

2 Non-local boundary condition

We consider here only the ice-covered region, y > 0, −∞ < x < ∞ and −H < z < 0, where H is
the water depth and z = 0 is the position of the ice/water interface at equilibrium. The ice sheet
of constant mass per unit area mi and rigidity Di corresponds to the half-plane y > 0. The ice
deflection w(x, y, t) is governed by the linear Kirchhoff-Love equation of a thin elastic plate,

miwtt +Di∇4w = p(x, y, w(x, y, t), t) (y > 0, t > 0), (1)

where p(x, y, z, t) is the hydrodynamic pressure acting on the ice/water interface z = w(x, y, t). This
linear model of continuous elastic ice plate is acceptable because ice breaks for relative elongations of
ice elements (strains) of order of 10−4. Large and moderate deformations of the ice plate lead to ice
breaking before such non-linear deformations are achieved. The plate equation (1) is solved subject
to the zero initial conditions, w(x, y, 0) = 0 and wt(x, y, 0) = 0, free-free boundary conditions at
the edge of the ice plate, and the far-field condition, w(x, y, t)→ 0 as x2 + y2 →∞ and t < +∞.

We assume that the equations of the flow under the ice sheet and corresponding boundary
conditions can be linearised, even if the flow outside the ice-covered region is fully nonlinear. The
linear theory of hydroelasticity provides the following equations describing the flow under the ice:

φxx + φyy + φzz = 0 (−H < z < 0, y > 0, |x| <∞), φ→ 0 (x2 + y2 →∞),

φz = 0 (z = −H, y > 0, |x| <∞), φz = wt(x, y, t) (z = 0, y > 0, |x| <∞). (2)

The hydrodynamic pressure on the ice/water interface is given by the linearised Bernoulli equation,

p(x, y, w(x, y, t), t) = −ρφt − ρgw(x, y, t),

where ρ is the liquid density and g is the gravitation acceleration. We assume that the normal
velocity of the flow on the fictitious vertical boundary of the ice covered region is given,

φy(x, 0, z, t) = G(x, z, t) (H < z < 0, y = 0, −∞ < x <∞, t ≥ 0). (3)

We shall solve the problem (1)-(3) and determine the potential φ(x, 0, z, t) at the vertical fictitious
boundary as an operator acting on G(x, z, t) in the form φ(x, 0, z, t) = Λ <G>. The latter relation
is suggested to be used as a boundary condition at the fictitious boundary of the open water region
with a ship moving there.

To solve the problem (1)-(3), we use the Fourier transform in the x-direction and the normal
mode method in the vertical z-direction. The velocity potential φ(x, y, z, t) is sought in the form
φ(x, y, z, t) = φ0(x, y, z, t) + Φ(x, y, z, t), where φ0(x, y, z, t) is the solution of the problem (2)-(3),
where wt(x, y, t) = 0. Correspondingly, Φ(x, y, z, t) is the solution of the problem (1)-(3), where
Φy(x, 0, z, t) = 0 on the fictitious boundary and the right hand side in (1) reads −ρΦt − ρφ0t −
ρgw(x, y, t). The potential φ0 is the solution of the problem for the rigid ice model. Note that
the solution of this problem exists only if the integral of the function G(x, z, t) over the fictitious
boundary is zero. We start with the potential φ0(x, y, z, t). This potential satisfies Laplace’s



equation and the conditions φ0z = 0 at z = −H and z = 0. The resulting relation on the fictitious
boundary reads
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The relation (4) written within the 2D+t approach without interaction between cross planes is

φ0(x, 0, z, t) =
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Note that here z = 0 corresponds to the ice-water interface but not to the equilibrium level of the
liquid, see Fig. 2. The lower part of the ice edge is submerged in water, which makes the derivative
φ0,y(x, z, 0, t) = O(|z|−

1
3 ) to be singular at the lower corner of the ice edge.

3 Numerical results

The computer code impact2d which was developed at TUHH, has been adjusted to account for
rigid level ice by implementing the proposed boundary conditions (4) and (5). Condition (5) is
consistent with classical 2D+t theory, where a single cross plane is used to approximate the 3D
flow. This problem is also solved directly by using panels on the rigid boundaries of the ice-covered
region without considering any conditions on the fictitious boundary. Additionally, condition (4)
has been implemented. As it requires integration along the x-axis, all cross planes need to be
modelled simultaneously. In that regard it is considered a first step towards implementation of
elastic ice sheets. The results obtained with the respective approaches are compared to each other
throughout the study. The results of the comparison will be presented at the Workshop.
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