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HIGHLIGHTS

• The hydrodynamics and wave interaction with multiple surface piercing floating structures with
arbitrary cross-sections are examined.

• The system is modelled under linear water wave theory and the boundary problem is solved using
a hybrid element method combining eigenfunction expansion and boundary element method.

• The simulation involves instantaneous coupling the equations of motion for the moultiple floating
structures and the fluid potentials.

• The hydrodynamics are studied using frequency dependent coefficients for wave forces, wave
reflection and transmission.

1. INTRODUCTION
The hydrodynamics of floating structures are essential in design and engineering of the categories ocean
structures like wave energy devices, free surface breakwaters, offshore platforms, ships etc., which has a
significant impact in the areas of coastal engineering, environmental protection, recreation, and various
marine facility designs. A significant aspect in floating body hydrodynamics is the steady oscillating
motion of the structure at the free surface. The oscillations of a floating body were the first consistently
examined by studying the superimposition of wave harmonics [1], and the transient motions of a freely
floating structure that simultaneously solved the time-domain fluid-motion and rigid-body dynamics of
the system [2]. Since then many researchers have theortically examined the problem using methods like
Galerkin approximation and finite element formulation [3], classical matched eigenfunction expansion
method [4][5], Boussinesq-type equations and eigenmode expansion [6] etc. These and other works
collectively expounded the hydrodynamics of such systems using scattered, radiated and diffracted
potentials, as well as wave forces, surface elevations and hydrodynamic coefficients. In spite of the large
amount of literature on floating breakwaters in numerical, analytical and experimental approaches,
the growing complexity of current and upcoming models has reignited the need for fast and stable
numerical schemes that can instantaneously couple the fluid forces in the system and dynamics of an
arbitrary floating body.

In the current work, the hydrodynamics of a general system of multiple floating structures, each
having vertical oscillations is modeled using linear water wave theory. The simulation involves coupling
the equations of motion for the floating body and the fluid potentials. The boundary value problem is
solved using hybrid-element method combining eigenfunction expansion and boundary element meth-
ods (EFEM-BEM). The hydrodynamics are studied using frequency dependent coefficients. Results
for multiple box type floating breakwaters are presented in this scenario. In addition to reducing wave
load excitation on the floating structures, the study will enhance the understanding of the impacts of
various physical parameters for minimizing incident wave energy, wave reflection, and transmission.

2. MATHEMATICAL FORMULATION
Wave interaction with multiple floating structures is modeled using the linear water wave theory and
solved using a hybrid element method EFEM-BEM. The fluid-structure interaction is considered in a
cartesian co-ordinate system wherein the fluid is modeled as inviscid, incompressible and irrotational,



due to which a scalar velocity potential Φ(x, y, z, t) can be defined satisfying ∇2Φ = 0. The configu-
ration in Fig. 1 consists of N floating structures Aj having different widths rj , where j = 1, 2, · · ·N ,
over a uniform seabed at water depth z = −h. The spacing between the structures j and j + 1 is lj ,
and the distances dj are defined recursively as d1 = r1, dj+1 = (dj + lj + rj+1), j = 2, · · · , (N − 1).
Thus, the fluid domain under consideration is divided into the water region A0, with outer regions one
the sea- and lee- side labelled as O1 and O2, respectively. It is presumed that the incident wave makes
an angle θ, with the x− axis and the fluid flow is simple harmonic in time with angular frequency ω.
The existing velocity potential in the three regions is of the form Φ(x, z, t) = ℜ{ϕ(x, z)e−i(kyy−ωt)},
and ky = k0 sin θ, where k0 is the progressive wave number, and the spatial velocity potentials ϕ(x, z)
are solutions to the Helmholtz equation(
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Figure 1: Schematic for the wave scattering configuration of multiple floating structures over a uniform
seabed.

The mean free surface is governed by kinematic and dynamic boundary conditions which are combined
to give the linearized free surface boundary condition as

∂ϕ

∂z
−Kϕ = 0, for z = 0 in A0, O1, O2, (2)

where K = ω2/g, and the bottom boundary condition on the rigid sea floor is

∂ϕj

∂z
= 0, for z = −h in A0, O1, O2. (3)

On the fluid-structure interface Sj between structure Aj and water region A0, j = 1, 2, · · ·N , assuming
the uniform vertical displacement ηj , the oscillatory motion is governed by the following N pair of
equations for j = 1, 2, · · ·N

∂ϕ
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=

∂ηj
∂t

(k.n) (4)

mj
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= −ρjgηj + iωρj

∫
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∂t
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where k is the unite vector in z-direction, n is the outward normal to the region A0, ρj is the structure
density, and mj is the structure mass. The radiation conditions for outer regions O1 and O2 are

ϕO1 =
(
I0e

−iq0x + R0e
iq0x
)
ζ0(k0, z) as x → −∞, (6)

ϕO2 = T0e
−iq0xζ0(k0, z) as x → ∞, (7)

where I0 is the known incident amplitude, R0 and T0 are the undetermined constants. ζ0(k0, z) is the

eigenfunction in the outside region O1 with q0 =
√
k20 − k2y.



3. SOLUTION METHODOLOGY
The numerical modeling of the wave action againstN floating structures is undertaken using the hybrid
element method (EFEM-BEM) applied on the three domains. The above boundary value problem is
tackled using the eigenfunction expansion of the potential in the outer regions O1, O2 combined with
a boundary element method in the inner fluid domain. The fundamental solution Green’s function,
derived using Green’s theorem, is implemented to convert the BVP into a boundary integral equation.
The domain of infinite water region is constricted by using fictitious auxiliary boundaries defined at
x = −r0 and x = R = dN + lN where r0 and lN are defined for auxiliary boundaries on left and right
of the N−structure array. The velocity potentials from eigenfunction expansion method are used to
evaluate the boundary conditions on auxiliary boundaries and subsequently used in the boundary
element formulation that begins with G0 ≡ G(x,x0) as the fundamental solution to Laplace equation
when it satisfies ∇2G0 + δx0 = 0, where δx0 is the Dirac delta distribution at the source point x0.
Thus G0 represents a radially symmetric solution field emanating from a unit source concentrated at
x0 and extending to infinity. Implementing the fundamental solution G0 and the potential ϕ into the
Green’s 2nd identity, the boundary integral representation can be formalized as follows:
Let ϕ be a harmonic function in Γ ∈ R2, a simple open and connected domain with boundary ∂Γ.
Then ϕ(x0) for x0 ∈ Ω can be expressed as

ϕ(x0) =

∫
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∂ϕ(x)

∂n
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∂n

)
dx (8)

where G(x,x0) is the fundamental solution of the Laplace equation and

G(x,x0) = −1

2
ln |x− x0|2 and

G(x,x0)

∂n
= −n · (x− x0)
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(9)

In case of oblique waves, the the fundamental solution to the Helmholtz equation Eq. (1) is Green’s
function G satisfying
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+
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− k2yG = δ (x− x0) δ (z − z0) , given by (10)

G (x, z ; x0, z0) = −K0 (kyr)
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where r =
√

(x− x0)
2 + (z − z0)

2 is the distance between (x0, z0) and (x, z) (i.e. source point to field

point), K0, K1 are the second kind modified Bessel functions of 0th order, 1st order, respectively. In
both cases of normal and oblique waves, for a closed domain Γ having boundary ∂Γ the boundary
integral representation from Eq. (8) is given by
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1
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(12)

Eqs. (12) are solved for the entire boundary ∂Γ of the three domains using constant element
boundary element method (BEM). The physical boundaries of the domains ∂Γj are discretized into
finite number of elements on which the values of ϕ and ϕn are taken as constant. Implementing the
boundary conditions, the integral equations are discretized, following which the kernels are integrated
using Gaussian integration to evaluate the integral coefficients. The resulting system of equations is
solved as a matrix equation and the unknown potentials are evaluated.

3.1 Velocity potentials in the outer region using eigenfunction expansion
In particular, due to the absence of a structure in the outer regions O1 and O2 and approximation of



a uniform bottom bed bottom bed, the velocity potentials are deduced by the eigenfunction expansion
method, such that for kn, n = 1, 2, · · · modes, the spatial velocity potential satisfying Eq. (1) along
with Eqs. (2)-(3) and Eqs. (6)-(7) in the outer region are given by a combination of eigenfunctions
and expressed as

ϕO1 = I0e
−iq0(x+r0)ζ0(k0, z) +

∞∑
n=0

Rn eiqn(x+r0)ζn(kn, z) at ΓL, (13)
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Tn e−iqn(x−R)ζn(kn, z) at ΓR, (14)

where ζn(kn, z) are given by ζn(kn, z) =

(
ig

ω

)
cosh kn(z + h)

cosh knh
, with kn satisfying the dispersion relation

ω2 = gkn tanh(knh). The undetermined constants Rn and Tn are evaluated using orthogonality of
eigenfunctions ζn in the outside regions as
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where En =

∫ 0

−h
ζn

2(kn, z) dz = −
(
g2

ω2

)
knh+ sinh (knh) cosh (knh)

2kn cosh
2 (knh)

and δn0 is the Kronecker delta

function. The derivative of potential is given as
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Substituting for Rn from Eq.(15) in Eq.(17) and truncating the infinite series after N -terms, it is
derived that
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The integral

∫ 0

−h
ϕO1 (s) ζn (kn, s) ds is evaluated using the same boundary element discretization as

in the evaluation of Green’s function and its normal derivative on the auxiliary boundary, which in
turn gives the matrix factorization of Ω. Thus, the integral is evaluated exactly, which in turn gives
the matrix factorization of Ω. Finally, Eqs. (12) and (19) are solved to derive a final matrix equation
to determine the unknown constants of the outer solution.

4. RESULTS
In the following results, upto three structures of rectangular shape are considered. The optimal pa-
rameters rj/h = 0.5, lj/h = 0.5,∀j and θ = 10◦, kept fixed, unless otherwise stated. The observations
here are mainly discussed for wave scattering by the system and wave forces on the multiple structures
in varied configurations. The reflection, transmission and dissipation coefficients (Kr,Kt and Kd) and
vertical wave force on structure Aj are calculated as
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(a) Reflection coefficient
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(b) Transmission Coefficient
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(c) Vertical force on lee-side structure
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(d) Vertical force on each structure

Figure 2: Frequency dependence of hydrodynamics coefficients for multiple floating structures.

The above figures illustrate the frequency dependence of the hydrodynamic coefficients by plotting
Kr, Kt and Fv against non-dimensional wavenumber k0h. It is noticeable that with increase in the
number of structures, the oscillatory patterns in the reflection and transmission coefficients increase
(Figs.2(a),2(b)), indicating interference of incoming, reflected and radiated waves. This is also in-
dicated by the vertical wave force on the lee side structure (Fig.2(c)) and wave forces on different
structures (Fig.2(d)). The peaks and troughs in Fv correspond to interference of the waves that result
in increasing oscillations in the floating bodies. These results agree with those already found in the
literature, signifying the accuracy of the proposed method.
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