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1 INTRODUCTION

Originating in the field of electromagnetics, the term metamaterial is used to describe a mi-
crostructure which interacts with the wavefield to create unusual effects not normally associated with
scattering in ordinary settings. The microstructure is usually formed by a periodic arrangement of
elements whose design contributes to the macroscopic properties of the metamaterial. In water waves,
one such metamaterial device used recently by a number of authors is a closely-spaced periodic array
of thin vertical bottom-mounted plates. For example, it has been shown in [1], [2] that submerged
rectangular ridges are capable of perfectly transmitting negatively-refracted plane incident waves.
When plate arrays are formed into vertical circular cylinders extending through the depth [3] have
demonstrated that there is capacity for the cylinder to absorb significantly more wave energy than an
equivalent rigid cylinder operating in rigid body motion, exploiting the internal resonance associated
with the metamaterial properties of the plate array microstructure. [3] considered placing a damping
condition on the internal free surface of the cylinder and imagined how this could be representative of
a physical mechanical absorbing mechanism. Meanwhile, in a separate study of [4] in which narrow
vertical absorbing paddles were placed around the surface of a vertical cylinder also showed the ability
of a circular cylinder to absorb more energy than in rigid body motion.

In this paper, we return to [3] and consider a more realistic way to extract the power from the
internal resonance promoted by the metamaterial structure. We arrange a pair of hinged paddles with
springs and dampers about the midplane of each channel. The paddles are excited by water waves
to rotate around the hinge points and the dampers are used to control the power absorption. To
simplify the mathematical problem, an assumption is made in which the discrete paddle displacement
in discrete channels is replaced by a continuous double-sided paddle displacement along the centreplane
of a cylinder occupied with a continuous effective medium. The results show that this new type of wave
energy converter (WEC) can capture significantly larger energy in almost all incident wave frequencies
and angles when compared to the traditional WECs operating in rigid body motion.

2 PROBLEM FORMULATION

As shown in Fig.1, a parallel array of closely-spaced vertical thin plates aligned with y-axis are
confined within a circular cylinder of radius a centred at the origin in the water of depth h and density
ρ. Between adjacent plates, there are a pair of paddles hinged at z = −c with the identical damping,
γ, and spring, κ. The paddles are fitted above rigid walls occupying −h < z < −c. The paddles
are perpendicular to the plates and symmetrically distributed on either side of the symmetry plane
of the cylinder. Power is generated under the action of a regular wave with the amplitude A which
propagates at an angle β to the positive x-axis. It should be noted that there is no fluid between the
two rows of paddles and the separation between these two rows must be large enough that the paddles
do not come into contact in operation.

The whole fluid domain is divided into two regions: an outer region Ω1 = {r > a, 0 ≤ θ < 2π,−h ≤
z ≤ 0} and an inner region Ω2 = {r ≤ a, 0 ≤ θ < 2π,−h ≤ z ≤ 0}, where (r, θ) is the polar coordinate.

Linear potential theory is used to study the present problem and in which the fluid motion is
described by a velocity potential <[φ(x, y, z)eiωt], where ω is the assumed angular frequency. Therefore,



Figure 1: Sketch for the metamaterial cylinder with paddles.

the time-independent velocity potentials φk(x, y, z) satisfy

∇2φk(x, y, z) = 0 in Ωk (k = 1, 2). (1)

with
∂φk
∂z

=
ω2

g
φk on z = 0, and

∂φk
∂z

= 0 on z = −h. (2)

In the inner region, the velocity potential also satisfies no-flow conditions on either side of each
vertical channel wall. On the underlying assumption that the the width of the channel is much smaller
its length and water depth a multiscale homogenisation (e.g. Porter (2021)) can be used to replace
the combined internal fluid/structure by an effective medium governing equation

∂2φ2
∂y2

+
∂2φ2
∂z2

= 0 in Ω2. (3)

The velocity potential φ2(x, y, z) also satisfies kinematic and dynamic boundary conditions on the
surface of paddles. Since the width of the paddles is assumed small and the number of the paddles
consequently large, we assume that the pitch angles of the two paddle rows can be expressed as
continuous functions, σ±(x), of position x. For modelling simplicity, the distance of between the
two row of paddles and the thickness of the paddles (assumed much smaller than the radius of the
cylinder), are set to zero in the present study. Thus, the time-harmonic kinematic condition on the
two rows of paddles at y = 0±, −a < x < a is written

∂φ2(x, y, z)

∂y
=

{
−iωσ±(x)(z + c), −c < z < 0
0, −h < z < −c (4)

and the dynamic condition expressed as

(−ω2Ic + iωγ + κ+ C)σ±(x) = iωρ

∫ 0

−c
φ2(x, 0

±, z)(z + c) dz, −a < x < a (5)

where Ic = 1
3ρscd

(
c2 + 1

2d
2
)

and C = 1
2ρgd(16d

2 + c2)− 1
2ρsgc

2d are the moment inertia and restoring
moment per unit width for the paddles hinged along the center of the bottom edge. Here ρs represents
the density the paddle.

Applying the continuity of pressure and flux on the interface of the inner and outer regions, we
can obtain the corresponding matching conditions on the interface

φ1 = φ2, and
∂φ1
∂r

=
∂φ2
∂y

sin θ, on r = a. (6)

Since the structure possesses geometric symmetry about y = 0, the total potential can be written as
the sum of potential which are symmetric and anti-symmetric about y = 0, i.e.

φk = (φsk + φak)/2, (k = 1, 2), where

{
φsk(x,−y, z) = φsk(x, y, z),
φak(x,−y, z) = −φak(x, y, z).

(7)



Consequently, we only need to consider solutions in the upper half domain (y ≥ 0) provided we apply
appropriate conditions on y = 0 and introduce functions σs,a(x) from which σ±(x) = 1

2(σs(x)±σa(x)).
In the outer region, the solutions for the symmetric potential φs1 satisfying Eqs. (1), (2) and (7)

can be written as

φs1 = − igA

ω

∞∑
m=0

cosmθ

[
2εmim cosmβJm(kr)ψ0(z) +As

m0Hm(kr)ψ0(z) +
∞∑
n=1

As
mnKm(knr)ψn(z)

]
,

(8)
where the first term in the bracket represents the (symmetric) incident wave and the second and third
terms represent the scattered response. Here, ε0 = 1 and εm = 2, (m ≥ 1), kn (n = 1, 2, . . . ) are the
real positive roots of the dispersion equation ω2 = −gkn tan knh while k is the wave number defined
by k0 = −ik, ψn(z) are the vertical eigenfunctions defined by ψn(z) = cos kn(z+ h)/ cos knh and As

mn

are the undetermined coefficients.
By applying the method of separation of variables, the symmetric velocity potential φs2 in the inner

region satisfying Eqs. (2) and (3) can be written as

φs2 = − igA

ω

∞∑
n=0

[
Cs
n(x)e−kny +Ds

n(x)ekny
]
ψn(z). (9)

To solve the resulting problem, it is convenient to expand the unknown functions Cs
n(x) and Ds

n(x) in
Eq. (9) in a series of Chebyshev polynomials as [C,D]sn(x) =

∑∞
p=0[C,D]sn,pTp(x/a) where Cs

n,p and
Ds

n,p are unknown coefficients to be determined.
The expressions for the anti-symmetric potentials φak in the inner and outer regions can be obtained

after replacing cos functions with sin functions and replacing the superscript s with a.
By applying the symmetric/antisymmetric versions of the boundary conditions (4), (5), (6) to the

expressions given above, and using the orthogonality of trigonometric functions, and vertical eigen-
functions ψn(z), and after truncating the infinite series that result to finite series, a closed system of

equations with unknowns A
s/a
mn, C

s/a
np and D

s/a
np can be formulated. Once these coefficients are deter-

mined, the wave elevation in the wave field can be calculated using the linearised kinematic condition
on the free surface (η = iω

g φ|z=0). The mean power absorption can be evaluated by integrating the
time-averaged product of pressure and velocity over the paddle surfaces and this results in

P =
ρω

4
=
{∫ a

−a

∫ 0

−c

[
φs2(x, 0

+, z)
∂φs2

∗(x, 0+, z)

∂y
+ φa2(x, 0+, z)

∂φa2
∗(x, 0+, z)

∂y

]
dz dx

}
(10)

where ∗ represents the complex conjugate. In order to represent the results in a meaningful way, the
non-dimensional power P̄ is defined as P̄ = kP/Pi where Pi = 1

2ρgA
2cg represents the incident wave

power per unit width of the wave front and cg = (ω/2k)(1 + 2kh/ sinh 2kh) is the group velocity.

3 RESULTS

We consider a metamaterial cylinder of radius a is in the water of depth h = 2a at the incident wave
angle β = π/4 with the paddles attached to a constant non-dimensional damping κ̄ = κ/(ρac2

√
gh) =

0.2 and spring γ̄ = γ/(ρgac2) = 0.2. We consider four cases with the same paddle thickness d = 0.1a
and density ρs = 2ρ but different paddle lengths, c. Fig. 2(a) shows the non-dimensional power
P̄ generated by the paddles against the incident wave frequency. It shows that the paddle length
has little influence on the power extraction. The maximum mean power generated by an equivalent
axisymmetric WEC operating in combined rigid-body heave and surge/pitch motion under this non-
dimensionalisation is P̄ = 3/2 ([5]). For the present device, it can be found that P̄ > 2 for ka > 1.
Fig. 2(b) and (c) show the amplitudes of the paddle motion at ka = 1. Although the paddle length
is different, the horizontal displacements of the paddles at the mean surface are of the same order of



Figure 2: In (a) non-dimensional power generated by the metamaterial cylinder of radius a in water
of depth h = 2a for an incident wave angle β = π/4 with dimensionless damping γ̄ = 0.2 and spring
κ̄ = 0.2. In (b) and (c) the corresponding amplitudes of the paddle motion at ka = 1.

Figure 3: The wave elevation h = 2a at ka = 1 and β = π/4 with the damping γ̄ = 0.2 and spring
κ̄ = 0.2: (a) c/h = 0.25; (b) c/h = 0.50; (c) c/h = 0.75; (d) c/h = 1.00.

magnitude as the incident wave amplitude. Upside and leeside of the cylinder, the paddle tends to
moves more with greater amplitude as paddle length increases.

The corresponding wave elevations at ka = 1 are presented in Fig. 3. Although the horizontal
displacements of the paddles are similar to incident wave heights, the wave elevation – especially inside
the metamaterial cylinder – are quite different. With the longer paddle length, the wave amplitudes
induced by the paddles are relatively small. Remarkably, when the hinge point is close to the sea bed,
the wave elevations on surfaces of the paddles become relatively calm.

Fig. 4 shows a contour plot of the dimensional wave power P̄ generated by the metamaterial
cylinder with the paddle length c/h = 1.0 against the non-dimensional frequency ka and incident
wave angle β (due to symmetry, we need only consider 0 ≤ β ≤ π/2).

Figure 4: The contour of dimensional
wave power generated by the metamaterial
cylinder with the paddle length c/h = 1
against the non-dimensional frequency ka
and incident wave angle β.

The plot shows that, for most ka . 3, the power is
not sensitive to the incident wave angle implying that
this type of WEC can absorb high power from all wave
directions.
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