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1 INTRODUCTION
Coastal areas, including land-mass and water, have always been a significant part of human
civilisation. More than 600 million people live in a coastal region within 10 m of elevation, which
accounts for 10 per cent of the world population. On top of that, approximately 2.4 billion
people, around 40 per cent of the total world population, live within 100 Kms of the coastline.
Any threat to the coastal region thus possesses an enormous amount of potential damage to the
world population, a country’s economy, natural food resources, to name a few. Among all the
natural calamities, Tsunamis possess a grave threat which is evident from the recent accounts of
destruction caused by 2004 Indian Ocean, 2011 Tohoku Oki, 2018 Sulawesi and Palu Tsunami,
which were caused following submarine earthquakes. Predicting and simulating Tsunami waves
is of obvious importance in providing a reliable warning system. In particular, the inclusion of
compressibility allows for the simulation of acoustic gravity waves, which have been proposed as
a method for early warning [1, 2, 3]. It has also been shown that a Tsunami model based on a
compressible ocean is more accurate than a model with an incompressible ocean [2]. Many other
authors have shown this [4, 5, 2, 6]. It is also essential to simulate different kinds of motions
of the ocean bottom. An appropriate model taking the water compressibility into account and
that can cater to such changes in the initial time-domain displacement is developed in this
work.

2. MATHEMATICAL FORMULATION
We consider free-surface gravity wave propagation in a compressible ocean of finite depth h.

Figure 1: Schematic diagram of the single frequency problem with
sinusoidal oscillating bottom profile.

The physical problem is
formulated in a two-dimensional
Cartesian coordinate sys-
tem having z- axis point-
ing upwards and x- axis
horizontal. The ocean bed
is characterised as rigid.
A wave propagation due
to the ocean floor dis-
turbance is realised both
towards the positive and
negative x- direction un-
der the assumption of lin-
earised water wave theory. The flow is considered irrotational. We are interested in calculating
the time-dependent motion of the fluid due to a movement of the seafloor, simulating the gen-
eration of a Tsunami in two dimensions. We consider time-dependent growth l(t) of a fixed
displacement function X (x) of the ocean bottom between −b and b. We note that it would be



straightforward to generalise to more complex motions which were not separable using linearity.
Under these assumptions, the small amplitude displacement of the seafloor h̃ is given by

h̃(x, t) = l(t)X (x)H(b2 − x2),

where Φ is the displacement potential, g is the acceleration due to gravity, c =
K0

ρ0
is the speed

of sound in water, K0 being the bulk modulus and ρ0 is the undisturbed density of the whole
water region, and H(·) represents Heaviside unit step function. The boundary value problem
we wish to solve is given by

∇2Φ(x, z, t) =
1

c2
∂2Φ

∂t2
in − h < z < 0, (1a)

Φtt + gΦz = 0 at z = 0, (1b)

Φz = l(t)X (x)H(b2 − x2) at z = −h. (1c)

We calculate the single frequency solution considering a sinusoidal bottom profile. We consider
a block of the ocean bottom between −b and b with a sinusoidal surface which is oscillating
vertically with a unit amplitude and angular frequency ω (see Fig. 1) in the following form:

ζm(x, t) = exp
(
i
mπx

b

)
H(b2 − x2)eiωt = ζmc (x, t) + iζms (x, t), m ∈ Z (set of integers)

where

ζmc (x, t) = cos
(mπx

b

)
H(b2 − x2)eiωt, and ζms (x, t) = sin

(mπx

b

)
H(b2 − x2)eiωt, (2)

In this case the displacement potential can be written as Φ(x, z, t) = ϕm(x, z) exp (iωt) and ϕm

satisfies the following equations

∇2ϕm(x, z, ) = −ω2

c2
ϕm in − h < z < 0,

− ω2ϕm + gϕz = 0 at z = 0,

ϕm
z = exp

(
i
mπx

b

)
H(b2 − x2) at z = −h.

The problem will be solved by applying Fourier transformation of the form

F(k, z) =

∫ ∞

−∞
ϕm(x, z) exp(−ikx)dx, (4)

whose inverse Fourier transformation is given by

ϕm(x, z) =
1

2π

∫ ∞

−∞
F(k, z) exp(ikx)dk, (5)

The potential ϕ(x, z, ω) is obtained as

ϕm(x, z, ω)||x|<b = b(−1)m
{
4µ0 coshµ0(z + h)e−ik0b(mπi sin(k0x) + k0b cos(k0x))

k0(m2π2 − k2
0b

2)(2µ0h+ sinh 2µ0h)

+
N∑

n=1

4µn cosµn(z + h)e−iknb(mπi sin(knx) + knb cos(knx))

kn(m2π2 − k2
nb

2)(2µnh+ sin 2µnh)

+
∞∑

n=N+1

4µne
−λnb cos(µn(z + h))(imπ sinh(λnx) + λnb cosh(λnx))

λn(m2π2 + λ2
nb

2)(2µnh+ sin(2µnh))

}

− (−1)m
ξm cosh ξmz + (ω2/g) sinh ξmz

ξmD(ξm, h)
eimπ(x+b)/b, where ξm =

√
m2π2

b2
− ω2

c2
. (6)



The solution for cosine type bottom (cos(mπx/b)) can be retrieved as

ϕm
c (x, z, ω) =

ϕm(x, z, ω) + ϕ−m(x, z, ω)

2
.

The region-wise explicit forms for the potential function turn out to be

ϕm
c (x, z, ω)||x|>b = b2(−1)m

{
−4iµ0 sin(k0b) cosh(µ0(z + h))e∓ik0x

(m2π2 − k2
0b

2)(2µ0h+ sinh(2µ0h))

+
N∑

n=1

−4iµn sin(knb) cos(µn(z + h))e∓iknx

(m2π2 − k2
nb

2)(2µnh+ sin(2µnh))
−

∞∑
n=N+1

4µn sinh(λnb) cos(µn(z + h))e∓λnx

(m2π2 + λ2
nb

2)(2µnh+ sin(2µnh))

}
(7)

The upper sign is for x > b and the lower sign is for x < −b. When |x| < b, the following form
of ϕm

c (x, z, ω) is obtained:

ϕm
c (x, z, ω)||x|<b = b2(−1)m

{
4µ0 cosh(µ0(z + h))e−ik0b cos(k0x)

(m2π2 − k2
0b

2)(2µ0h+ sinh(2µ0h))

+
N∑

n=1

4µn cos(µn(z + h))e−iknb cos(knx)

(m2π2 − k2
nb

2)(2µnh+ sin(2µnh))
+

∞∑
n=N+1

4µne
−λnb cos(µn(z + h)) cosh(λnx)

(m2π2 + λ2
nb

2)(2µnh+ sin(2µnh))

}

−
ξm cosh ξmz +

ω2

g
sinh ξmz

ξm

(
ξm sinh(ξmh)− ω2

g
cosh(ξmh)

) cos
(mπx

b

)
, where ξm =

√
m2π2

b2
− ω2

c2
. (8)

Similarly, the same for the sine type bottom (sin(mπx/b)) can be obtained as

ϕm
s (x, z, ω) =

ϕm(x, z, ω)− ϕ−m(x, z, ω)

2i
,

and the potential functions in the regions |x| > b and |x| < b can easily be computed. We now
return to our primary problem of a finite time growth of the ocean bottom between −b and b.
We write X (x) as a Fourier series

X (x) =

(
∞∑

m=0

ζmc cos
(mπx

b

)
+ ζms sin

(mπx

b

))
(9)

Applying a Fourier transformation in time (which is equivalent to a Laplace transform since
the fluid is at rest)

Φ̂(x, z, ω) =

∫ ∞

0

Φ(x, z, t)e−iωtdt, (10)

we can find the solution as

Φ̂(x, z, ω) = W(ω)

(
∞∑

m=0

ζmc ϕm
c (x, z, ω) + ζms ϕm

s (x, z, ω)

)
where W(ω) =

∫ ∞

0

l(t)e−iωtdt.

Now taking the inverse Fourier transformation, we obtain the potential function as

Φ(x, z, t) =
1

2π

∫ ∞

−∞
Φ̂(x, z, ω)eiωtdω = Re

{
1

π

∫ ∞

0

Φ̂(x, z, ω)eiωtdω

}
. (11)



We present here a formula for the surface elevation which is

η(x, t) =
1

π

∞∑
m=0

ζcmRe

{∫ ∞

0

W(ω, τ)fm
c (x, ω)eiωtdω

}
+

1

π

∞∑
m=1

ζms Re

{∫ ∞

0

W(ω, τ)fm
s (x, ω)eiωtdω

}
.

The first integral in the RHS represents the surface elevation when cos(mπx/b) type bottom
is considered, and the second term represents the same for sin(mπx/b) type bottom. The
quantities fm

c (x, ω) and fm
s (x, ω) are defined by

fm
c (x, ω) =

∂ϕm
c (x, z, ω)

∂z

∣∣∣∣
z=0

and fm
s (x, ω) =

∂ϕm
s (x, z, ω)

∂z

∣∣∣∣
z=0

.

3 RESULTS
The surface profiles for a flat profile and for a Gaussian profile of the form X = exp(−6(x/20000)2)
are shown for τ = 10s, lmax = 1, b = 20 Km and h = 5 Km in which

l(t) =
lmaxt

τ
H(t(τ − t)) + lmaxH(t− τ) with W(ω, τ) = lmax

(
e−iωτ − 1

)
τω2

.
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Figure 2: The bottom displacement is shown
as a red dashed line for illustration only. The
incompressible shallow water solution is also
given along with the incompressible solution.
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Figure 3: As in Fig. 2 except the bottom dis-
placement is given by a Gaussian function.
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