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1 INTRODUCTION
In incompressible fluids approximation, both finite-differences and finite-volumes solutions of
the Poisson equation rely on a gridding of the fluid domain. The most straightforward way
to grid the domain is to use a mesh fitted to the fluid boundaries. However, the generation
of body fitted grids is time-consuming and relies on the experience of the people for a good
quality representation of the fluid flow; in fact, poor meshes can cause non-physical results
and undermine the stability of the solution. Moreover, for moving boundaries (e.g. the free
surfaces), the boundary deformation can change the topology of the domain and a new gridding
is necessary. To avoid all these problems, immersed boundary methods have been devised to
describes solid boundaries on Cartesian grids. A full analysis of all the immersed boundaries
methods can be found in [1]. There, they are catalogued as a) indirect Boundary Conditions
(BC) with a forcing extending into the fluid region and b) direct BC either in the form of
Ghost Cell methods in Finite-Differences approaches and Cut-Cell methods in Finite-Volumes
approaches. In this work a Cut-Cell approach is devised for finite-differences modelling, taking
into account both still or moving boundaries with either Neumann or Dirchlet conditions.

Figure 1: Left: example of local mesh refinement; in orange the cell centers of the coarse grid
where care must be taken for the interpolation from the finer mesh. Right: Definition of the
20-points stencil for a cell cut by the domain boundaries. The actually used points in equation
(5) are plotted in red, green, blue, black and yellow.

Left part of figure 1 shows how Adaptive Mesh Refinement (AMR) is also introduced into
the modelling without significant changes in the way the boundary conditions are treated but
for some points. Differently from what is done in [2], where an energy bound is set up on
the boundary, here, the geometry of boundary is reconstructed on the Cartesian grid cells to
describe even the finest detail of the surface geometry.



2 MATHEMATICAL FORMULATION
The aim of this work is to solve the classical Poisson equation ∇2φ = RHS on an irregular
domain represented on a Cartesian grid with both Neumann and Dirchlet BC. The classical
second order accurate 7-points stencil is used to discretize equation in points well inside the
fluid domain. In the cell centre P0, close to the boundaries, the function φ0, is written as
combination of φi in the surrounding points Pi at a distance (∆xi,∆yi,∆zi) from P0. The forth
order accurate interpolation of the function φ around the point Pi (either in the fluid domain
or on the Dirchlet boundary) can be written using a Taylor expansion as:
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Similarly, in the point Pj (on a Neumann boundary), the derivative of function φ normal to
the Neumann boundary can be written as
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with (nxj, nyj, nzj) the normal-unitary vector to the the boundary through point Pj.
Both the Taylor expansions are written with 19 terms. Supposing that the normal deriva-

tives are known in Nn points and the values of the function φ is known in Nm points (with
Nn +Nm = 19), it is possible to multiply each of the equations (1) by a coefficient ai and each
of the equations (2) by a coefficient bj so that summing them we have:∑Nm
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where the coefficients Fα depende on ∆xi,∆yi,∆zi (see equation (1)) and the Gβ depende on
∆xj,∆yj,∆zj, nxj, nyj, nzj from equation (2).

In order to have that the left hand side of equation (3) represents a second order accurate
approximation of the Laplacian operator in point P0, we have to impose that the coefficient
of each of the derivative of φ0 is null but for those of ∂2φ0

∂x2
, ∂2φ0

∂y2
and ∂2φ0

∂z2
. Each of these last

coefficients has to be equal to 1. So we identify a system of 19 equations with 19 unknowns
(the Nm ai coefficients and the Nn bj coefficients). Practically, we define a linear system

M

{
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}
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where {I19} is a vector with all its elements equal to zero but for the 4th, 5th and 6th ones and
where the solution vector {ai, bj}T is later used to approximate the Laplacian operator from
the left hand side of equation (3), namely:
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Practically we have enlarged the stencil to 20 points close to the domain boundaries. In
same cases, system (4) becomes overdetermined. To overcome this problem, a Singlular Value
Decomposition SVD is used.

2.1 Definition of the points on the stencil
To identify the 20-points of the stencil close to the boundary, we refer to the right side of figure
1. There, the cell of interest is plotted with red edges and it is cut by the boundary surface
represented with a dark and light blue surface. The two colors indicate two different boundary
conditions that can be given on that surface. In the same picture, the blue spheres represents
the classical 7-points stencil. Other 12 points are used here and shown in black. Actually,
some of those points, as the top ones (shaded in gray), are outside of the fluid domain. For
this reason, they are substituted with the green points, that are the intersection between the
boundary surface and the line connecting the cell-center with those outside points. In this
particular case, two of those points are characterized by a kind of boundary condition while
four are characterized by the other BC.

The last point for the solution of system (4) should be possibly inside the domain. To satisfy
this requirement, it is obtained using n, the unitary normal vector to the boundary surface in
the closest point to the cell centre, pointing inside the domain. This new point is represented in
yellow in figure 1 and it is at distance (2N(nx)∆x, 2N(ny)∆y, 2N(nz)∆z) from the cell centre,
where N(f) stands for nearest whole number to f .

2.2 Local Mesh Refinment
To handle different mesh sizes, the solution of the Poisson equations is based on an iterative
process similarly to [3]. S0: At the first iteration level, the solution is calculated on the coarsest
subsiding mesh as described in paragraph 2.1; Sl: then the solution on any further level of
refinement is calculated only on that level with Dirchlet BC on the border with a coarser mesh.
CH: At the end of this up-level process, the solutions form the local finest level is interpolated
on the coarsest mesh. If the difference between the interpolated value and the initial coarsest
solution is lower than a threshold value, the solution can be accepted as it is. Otherwise, on the
coarsest level, these interpolated values are used to recalculate the forcing term of the Poisson



equation in the refined region, taking into account the details that the coarse mesh is unable
to see and the whole process from S0 to CH is repeated. Particular care has to be taken for
the cell centers highlighted in orange in the left side of figure 1. There, the set of points used
for the interpolation from the finer mesh should be deprived of those points outside the fluid
domain.

3 APPLICATION TO THE SEMI-AVARAGED MODEL
In [4], the Depth Semi Averaged Model (DSAM) was applied to the study of the interaction
of a solitary wave with a submerged obstacle. In that case, an indirect immersed boundary
condition has been applied to the solution of the Poisson equation ∇2Γ = ∇ ·

(
M
d

)
for Γ the

semi-averaged vertical velocity component written as Γ =
∫ η
z
wdz, where w is the vertical

component of the velocity, h the local bathymetry, d is the local water depth and M is the
generalized mass flux.

In [4], the results from DSAM were compared with those obtained with OpenFOAM char-
acterized by a mesh three times finer. The results were in reasonable good agreement but
for the local interaction with the upper edges of the submerged obstacle. Figure 2 shows the
comparison of water heigh obtained with the Navier-Stokes solver (bottom part of the panels)
with the indirect immersed boundary on the left and with the Cut-Cell method on the right
for DSAM. When interacting with the backward facing step, the new Cut-Cell method allows
to better capture the details of the interaction with the edge. After that time step, the high
steepness of the free surface causes a local mesh refinement that allows to reach the breaking
of the wave front. However, the details of the breaking cannot be modelled in DSAM and they
are not fully captured by OpenFOAM without any further refinement.

Figure 2: Comparison of water height obtained with the full Naver-Stokes solver(OpenFOAM)
versus the solution of DSAM with indirect immersed BC (left side) and with Cut-Cell method
(right).
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