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Waves generated by moving disturbances on the seafloor

Yongbo Chena, Masoud Hayatdavoodia,b, BinBin Zhaoa and R. Cengiz Ertekina,c

a. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
b. School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK

c. Department of Ocean & Resources Engineering, University of Hawaii, HI 96822, USA

Email: mhayatdavoodi@dundee.ac.uk

Introduction

Moving disturbances on the seafloor have been used by e.g., Tuck & Hwang (1972) to generate long
waves to study tsunami run-up. Bottom moving disturbances can also be used as wave-makers to
generate long waves in laboratory e.g., by Jamin et al. (2015). In principle, waves may be generated
by a bottom disturbance, moving or oscillating in the vertical or horizontal direction. The bottom
disturbance may be a continuous surface or discrete (in the case of a piston located on the seafloor).
In this study, waves generated by moving disturbances on the sea floor are studied by use of the Level
I Green-Naghdi (GN) equations. Attention is confined to waves generated by continuous bottom
surface which is allowed to move in either vertical or horizontal direction. Results are compared with
existing laboratory experiments and available numerical data. The model is then used to study waves
generated by oscillatory bottom disturbances.

The level I Green-Naghdi Equations

Green et al. (1974) showed that the exact three-dimensional equations of motion of an inviscid and
incompressible fluid (Euler’s equations) can be simplified by making a single assumption about the
distribution of the vertical velocity. The resultant equations are known as the GN equations, and they
satisfy the nonlinear boundary conditions and the conservation of mass exactly, and postulate the
integrated form of the conservation of momentum and energy laws. The GN equations are classified
based on the assumption made about the distribution of the vertical velocity over the fluid column.
In the Level I GN equations, used in this study, the vertical velocity varies linearly from the seafloor
to the free surface. Consequently, (due to the continuity equation) the horizontal velocity is invariant
over the water column in the Level I GN equations. These conditions are mostly applicable to the
unsteady and nonlinear fluid motions in shallow waters, the subject of this study.

A rectangular Cartesian coordinate system (x1, x2) is used, where the origin is at the still-water
level (SWL), with x1 pointing to the right, and x2 pointing upward against gravity. Ertekin (1984)
provided a compact form of the Level I GN equations. In two dimensions the equations are given by
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where α(x1, t) is the bottom profile of the fluid sheet, η(x1, t) is the free surface, measured from the
SWL, h is the water depth, g is the gravitational acceleration and ρ is the fluid mass density. The
subscripts after commas denote partial derivatives with respect to the variables, while the superposed
dots mean first and second material derivatives. p̄ is the pressure at the bottom profile and p̂ is the
pressure on the free surface and p̂ = 0 in this study without loss in generality. All the variables in this
manuscript are dimensionless using ρ, g, and h as a dimensionally independent set, hence
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For simplicity, the superscript (′) are removed from all variables in the foregoing.



Continuous bottom disturbance

The system of equations (1) to (4) is solved to determine the impact of moving bottom disturbances
on fluid. In this study, attention is confined to cases where the bottom disturbance is described by a
continuous function, i.e. α(x1, t) is continuous at all times. Cases where the bottom is discontinuous
shall be considered in the future. The solution approach of the problem is described below.

At any given time, Eqs. (1) and (2) are solved for two unknowns, η and u1, with α(x1, t) given as
a known function. For a given α(x1, t), Eq. (1) contains only time derivatives of function η. Hence,
at a given time step, surface elevation is determined explicitly by use of Eq. (1). The first and second
material derivatives of η are given by η̇ = η,t + u1η,x1 and η̈ = η̇,t + u1η̇,x1 . Substituting η,t and η,tt
(obtained from Eq. (1)) into η̈, gives
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). (6)

Substituting Eq. (6) and material derivatives, α̇, α̈ and α̈,x1 into Eq. (2), gives
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Equation (7) is similar to that given by Ertekin (1984) for a flat and stationary seafloor, involving
the following additional terms due to the moving bottom disturbance: α,x1tt, 2u1,x1

α,x1t, 2u1α,x1x1t,
α,tt and 2u1α,x1t. Equations (1) and (7), η and u1 are solved numerically by use of the finite dif-
ferent method. Equation (7) forms a tridiagonal matrix of u1, which is solved by use of a Gaussian
Elimination method. Then u2 and p̄ are obtained explicitly by Eqs. (3) and (4). Discussion on the
applicability of high level GN equations to generation of long waves by a moving bottom disturbance
can be found in Zhao et al. (2011).

Results and Discussion

Results include comparisons with available data, followed by results of the GN model for waves gen-
erated by a moving bottom. A sketch of an arbitrary-shaped bottom disturbance on an otherwise flat
bottom is shown in Fig. 1.

In a study by Tinti & Bortolucci (2000), waves generated by a disturbance moving horizontally
on the seafloor are investigated by use of shallow water wave approximation method. The bottom
disturbance is given by

α(x1, t) =

{

Hs

2
[1− cos( 2π

Ls

(x1 − xs))], xs ≤ x1 ≤ xe,

0, x1 < xs, x1 > xe,
(8)

where Ls = 10 and Hs = 0.01. The bottom disturbance moves along x1 with constant velocity Vs.
Shown in Fig. 2, the snapshots of wave profiles calculated by the GN equations are compared with
those of Tinti & Bortolucci (2000). Figure 2 shows that two waves are generated: one wave with
distinguishable peak and trough propagates in the same direction as the bottom disturbance while
the other wave with almost only one trough propagates in the opposite direction. Overall, very good
agreement is observed between the results.

Next, the laboratory experiments conducted by Hammack (1973), in which the bottom disturbance
oscillates vertically, is considered. The bottom disturbance on the seafloor is given by

α(x1, t) = Hs(t) ∗H((
Ls

2
)2 − (x1 − x0)

2), x1 ≥ 0, (9)



Figure 1: A sketch of the numerical wave
tank with an arbitrary-shaped bottom dis-
turbance, defined by a continuous function
f(x1, t). xs and xe are the starting and end-
ing position of the bottom disturbance, and
Ls = xe − xs is the disturbance length.
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Figure 2: Snapshots of surface elevation at (a) t = 6.26, (b) t = 12.53, (c) t = 18.79 and (d) t = 25.06,
obtained by the GN model and shallow water approximation of Tinti & Bortolucci (2000). The bottom
disturbance moves with constant speed of Vs = 0.639 and stops at t = 26.06.

where Ls = 24.4, x0 is the coordinate of the middle point of the moving disturbance, x0 = xs+xe

2

and H() is the unit step function (whose value is zero for negative arguments and one for positive
arguments). Hs(t) is given by

Hs = H0(1− e−qt), t ≥ 0, (10)

where H0 is the oscillating amplitude of the bottom disturbance and q is constant. For the purpose
of this comparison, we make sure that the bottom surface is continuous (i.e., the edges of the bottom
disturbance are made smooth).

Time series of water surface elevation downstream of the obstacle are shown in Fig. 3, where
results of the GN model are compared with the laboratory measurements of Hammack (1973) and the
Boussinesq model of Fuhrman & Madsen (2009). At x1 = xe and x1 = xe+20, GN results show better
agreement with the laboratory experiments. Both GN and Boussinesq models (Fuhrman & Madsen
(2009)) overestimate the surface elevation at x1 = xe + 180 and x1 = xe + 400. Overall, there is close
agreement between results of the two models and the laboratory measurements.

In this part, we study waves generated by a continuous moving bottom disturbance whose shape
is described by the following hyperbolic function:

α(x1, t) = Hs(t) ∗R(x1) ∗ sech2(x1 − x0). (11)

The bottom disturbance oscillates vertically, defined by Hs(t) = H0sin(ωt) where ω is the oscillation

frequency of the bottom surface. The ramp function is given as R(x1) = e
−(x1−x0)

2

σ
2 , where σ is a

constant, controlling the effective width of R(x1).
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Figure 3: Time series of wave surface elevation recorded at (a) x1 = xe, (b) x1 = xe + 20, (c) x1 =
xe + 180 and (d) x1 = xe + 400, downstream of the disturbance. H0 = −0.1 and q = 0.978.



Figure 4 shows snapshots of wave surface elevation and bottom disturbances with H0 = 0.05, 0.1
and 0.15. Wave profiles are very close to each other at x1 ≥ x0 +

Ls

2
with H0 = 0.1 and 0.15. This

can also be seen in Fig. 5 where time series of the surface elevation are recorded at four gauges.
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Figure 4: Snapshots of waves generated by the oscillating bottom disturbance with H0 = 0.05, 0.1
and 0.15, Ls = 4, ω = 1.57 and σ = 1.
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Figure 5: Time series of the wave surface elevation generated by the oscillating bottom disturbance
with H0 = 0.05, 0.1 and 0.15, Ls = 4, ω = 1.57 and σ = 1.

Shown in Fig. 5, the oscillatory waves generated by a vertically oscillating disturbance have the
same frequency as the moving disturbance and propagate with no change in their frequency. The
wave height seems to increase as the oscillation height of the bottom disturbance increases, but the
relationship appears to be nonlinear. Overall, the GN model developed in this study shows promising
accuracy to study nonlinear waves generated by bottom disturbances.
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