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Speed-effect restoring forces on ship motions
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Following a new decomposition of radiation forces into the sum of added mass, damping and restoring components,
it is shown that the speed-effect restoring forces are critically important not only to keep the theoretical consistency
but also to predict ship motions with much improved accuracy.

1 Unsteady potential of time-harmonic flow
We define a Cartesian coordinate system translating at the speed U with the ship in the positive x-direction. The
z-axis is positive upwards with the origin at the undisturbed free surface. Relative to this reference frame, there
exists an ambient flow −Ui opposing the ship forward direction. The presence of ship in this ambient flow creates a
ship-shaped steady flow around the hull, called base flow W = U∇(φ̄−x). In addition to this base flow, there should
be a wavy steady flow ∇φ. When the ship oscillates about the reference frame or/and in incoming waves, there exists
also an unsteady flow ∇ψ. The wavy steady and unsteady flows are called perturbation flow and represented by the
velocity potential Φ = φ + ψ. All velocity potentials (φ̄, φ, ψ) satisfy the Laplace equation in the fluid. The total
flow W +∇Φ satisfies the kinematic and dynamic conditions written in the combined form

Φtt + gΦz + 2W · ∇Φt + W · ∇(W · ∇Φ) +∇Φ · (W · ∇)W

= −2∇Φ · ∇Φt − (W +∇Φ) · (∇Φ · ∇)Φ−∇(W · ∇Φ) · ∇Φ− gUφ̄z −W · (W · ∇)W
(1)

on the free surface z = η which is defined by

η = −1

g

[
(∂t + W · ∇)Φ +

1

2
∇Φ · ∇Φ +

1

2
(W ·W − U2)

]
(2)

The above equations (1) for potentials Φ = φ+ ψ and (2) for wave elevations are fully nonlinear with quadratic and
cubic products of potentials and the assumption of time independence concerns only the base flow W. Obtaining
solutions of such problems with accuracy is extremely difficult if not impossible.

We assume now the base flow W = U∇(φ̄ − x) is of order O(1) while the perturbation flows Φ = φ + ψ are
of smaller order o(1) comparing to the base flow (φ̄ − x) in the same way presented in Sclavounos (1995). Thus,
the quadratic and cubic products of (φ, ψ) on the right-hand side of (1) are ignored. Furthermore, the free-surface
elevation η is also assumed to be of smaller order o(1) which is true for small or moderate speed. The Taylor
expansion of all terms in (1) with respect to z = 0 can be used to express the boundary condition on the mean free
surface. Finally, the frequency-domain expression of unsteady potential is scaled and written as

ψ = <e
{
ϕ e−iωet

}
L
√
gL (3)

with ωe the encounter frequency, g the acceleration due to gravity and L the ship length. The base flow W = Uw
with w = ∇φ̄− i is used to obtain the linear boundary condition for the unsteady flow ϕ

ϕz − ω2ϕ− 2iτw · ∇ϕ+ F 2
r w · ∇(w · ∇ϕ) + F 2

r ∇ϕ · (w · ∇)w + φ̄zz(iτϕ− F 2
r w · ∇ϕ) = 0 (4)

on the mean free surface z = 0. In (4), we have used the notations ω = ωe
√
L/g for dimensionless encounter

frequency, Fr = U/
√
gL the Froude number and τ = ωFr the Brard number. Without considering the presence of

ship, the classical Neumann-Kelvin linearisation can be derived by taking φ̄ = 0 (then w = −i) in (4)

ϕz − ω2ϕ+ 2iτϕx + F 2
r ϕxx = 0 (5)

which is widely used in many previous studies. The Neumann-Kelvin boundary condition (5) can be illustrated as
the uniform stream penetrating in and through the ship hull (physically unacceptable) as shown by the left part of
Figure 1. The linearisation based on the ship-shaped stream (4) is illustrated on the right part of Figure 1 which is
physically acceptable.



Figure 1: Uniform stream (left) vs ship-shaped stream (right) as the base flow in the linearisation

The boundary condition on the ship hull is written on H at its mean position

∂

∂n
ϕ =

{
−ϕIn diffraction∑6
j=1 (−iωξjnj + Frξjmj) radiations

(6)

The potential ϕI representing incoming waves is well known. The six elementary motions are denoted by ξj for
j = 1, 2, · · · , 6 including the translations T = (ξ1, ξ2, ξ3) and rotations R = (ξ4, ξ5, ξ6). The vector components {nj}
for j = 1, 2, · · · , 6 are elements of the generalized normal vector {n, r∧n} defined in (13) and {mj} for j = 1, 2, · · · , 6
are those of mj terms

(m1,m2,m3) = −(n · ∇)w and (m4,m5,m6) = −(n · ∇)(r ∧w) (7)

given in Newman (1978), depending on the ship-shaped stream w and the position vector r. The normal vector
n = (n1, n2, n3) is defined positive inwards to the fluid.

This linearised boundary value problem with the condition (4) on the mean free surface and the condition (6)
on the ship hull has been solved in Chen et al. (2021) by using the Green function associated with a pulsating and
translating source with the viscous effect, and developing its analytical integration on the hull and on the free surface.
The boundary integral equation includes that on the hull, that on the zone of free surface in the vicinity of ship and
one over the waterplane inside the ship to ensure the good conditioned system of solutions. Numerical results in
excellent agreement with experimental measurements shows that the method in Chen et al. (2021) provides well a
reliable and practical method to evaluate wave loading and induced ship motions. One of important features in this
new Green function method concerning a new decomposition of radiation forces is presented here.

2 Decomposition of radiation forces
According to the boundary condition (6) on the ship hull H, the time-harmonic potential ϕ can be written as the
sum ϕ = ϕD + ϕR of the diffraction ϕD and radiation ϕR. The radiation potential ϕR is further decomposed as

ϕR = −iω

6∑
j=1

ξjϕ
n
j + Fr

6∑
j=1

ξjϕ
m
j (8)

in which the first 6 elementary potentials are due to ship velocities −iωξj for j = 1, 2, · · · , 6 and the second 6
potentials associated with ship’s motions interacting with the base flow w via mj terms. The boundary conditions
on the hull for (ϕnj , ϕ

m
j ) are then written by

∂

∂n
ϕnj = nj and

∂

∂n
ϕmj = mj (9)

for j = 1, 2, · · · , 6. The time-harmonic pressure scaled with (ρgL) can be obtained by Bernoulli’s equation

pR = −
[
− iωϕR + Fr(w · ∇ϕR)

]
=

6∑
j=1

ξj

[
ω2ϕnj +iτ

(
w · ∇ϕnj +ϕmj

)
− F 2

r w · ∇ϕmj
]

(10)

by introducing the radiation potential (8) and considering the notation for the time derivative of the time-harmonic
potential ψt = −iωϕ. In addition, the hydrostatic pressure pH and that pS due to the base flow are written by

p0 = pH + F 2
r p

S with pH = −z and pS = −1

2
(w ·w − 1) = −1

2

(
∇φ̄ · ∇φ̄− 2φ̄x

)
(11)

which yield the usual hydrostatic stiffness due to the spatial variations of pH and of the ship hull associated with the
ship motion, and the speed-effect restoring forces due to the variations linked to the base-flow pressure pS .

The radiation forces including linear forces scaled by (ρgL3) and torque moments scaled by (ρgL4), are defined
as the reaction of fluid via pressure on the ship hull against the acceleration, velocity and displacement of the ship,
under the chosen reference system associated with the mean position of the ship

FR = −
∫∫
H

pRN ds−
∫∫
H

(
X · ∇p0 + p0R ∧

)
N ds−

∮
Γ

(ηR−X3)p0N dl (12)



for i = 1, 2, · · · , 6. In (12), N is called generalized normal vector, and X the displacement vector

N = {n, r ∧ n} = {n1, n2, n3, n4, n5, n6}
X = T + R ∧ r = {X1, X2, X3} with r = {x− x0, y − y0, z − z0}

(13)

associated with the translation/rotation (T /R) and the position vector r with respect to the reference point r0 =
(x0, y0, z0). The notation R ∧N = {R ∧ n,R ∧ (r ∧ n)} is adopted. The waterline integral is resultant from the
integration on the intermittant surface between the local free-surface elevation ηR = −iωϕR + Fr(w · ∇ϕR) and the
vertical displacement of the waterline. This term often omitted in many studies is kept in Chen (2021). In addition
to the projection of gravity force on the moving ship, we write

FR +
{
0, (R ∧ rG) ∧G

}
= −

6∑
j=1

ξj
(
− ω2Aij − iωBij + Cij

)
(14)

in which Aij , Bij and Cij on the right-hand side are called added-mass, damping and stiffness coefficients, respectively,
following their respective association with the acceleration, velocity and displacement of the ship. The gravity G
scaled by (ρgL3) is equal to (0, 0,−V/L3) with V the buoyant volume in still water and rG the center of gravity.

Among all terms in (12) and (14), the simplest ones are associated with the hydrostatic pressure pH = −z

−
∫∫
H

(
X · ∇pH + pHR ∧

)
N ds+

{
0, (R ∧ rG) ∧G

}
= −

6∑
j=1

ξjHij (15)

in which Hij is called hydrostatic restoring coefficients given in all textbooks. In a similar way, the contribution by
pS defined in (11) can be written by

−F 2
r

∫∫
H

(
X · ∇pS + pSR ∧

)
N ds+ F 2

r

∮
Γ

X3p
SN dl = −F 2

r

6∑
j=1

ξjSij (16)

where Sij is called speed-effect restoring coefficients. Concerning the radiation forces due to the time-harmonic
pressure pR defined by (10) and the free-surface elevation ηR along the waterline, we decompose them

−
∫∫
H

pRN ds− F 2
r

∮
Γ

ηRpS0N dl = −
6∑
j=1

ξj

(
− ω2Rωij − iτRτij + F 2

r R
Fr
ij

)
(17)

with the components 

Rωij = −
∫∫
H

ϕnj ni ds+ F 2
r

∮
Γ

ϕnj p
S
0 ni dl

Rτij = −
∫∫
H

(
w · ∇ϕnj + ϕmj

)
ni ds+ F 2

r

∮
Γ

(
w · ∇ϕnj + ϕmj

)
pS0 ni dl

RFr
ij = −

∫∫
H

(
w · ∇ϕmj

)
ni ds+ F 2

r

∮
Γ

(
w · ∇ϕmj

)
pS0 ni dl

(18)

By introducing (15), (16) and (17) back to (12) and following the usual notations, the coefficients (Aij , Bij , Cij) on
the right-hand side of (14) are given by

Aij=<e
{
Rωij+i(Fr/ω)Rτij−(F 2

r /ω
2)
(
RFr
ij −R

S
ij

)}
Bij==m

{
ωRωij+iFrR

τ
ij−(F 2

r /ω)RFr
ij

}
Cij=Hij + F 2

r

(
Sij +RSij

) (19)

The terms RSij in above (19) are defined by the limit at zero frequency of the component RFr
ij given in (18)

RSij = RFr
ij (ω → 0) (20)

which are purely real.

3 Speed-effect restoring forces and ship motions
The new decomposition (14) of radiation forces (plus gravity contribution) into added-mass (Aij), damping (Bij) and
restoring coefficients (Cij) given by (19) includes two speed-effect restoring coefficients Sij contributed by the steady
pressure (16) and RSij by the ”unsteady” pressure at the limit of zero frequency (20). The speed-effect restoring



forces RSij are subtracted from the added-mass coefficients so that Aij in (19) tend to a finite value at ω→0 unlike

the classical added-mass coefficients which tend to infinity as O(ω−2) by ignoring the speed-effect restoring forces.

In addition to the classical hydrostatic restoring coefficients Hij defined by (15), the total restoring coefficients
Cij in (19) are augmented by the speed-effect components (Sij +RSij) multiplied by the factor F 2

r . These additional

components are then negligible for Fr → 0 as expected. The component RSij can be approximated by

RSij = −
∫∫
H

ni(w · ∇ϕ̄mj ) ds+O(F 2
r ) (21)

by ignoring the waterline integral of order O(F 2
r ) on the right-hand side of (18). The zero-frequency ”unsteady”

potentials ϕ̄mj associated with the mj terms can be approximated by

{ϕ̄mj }j=1,2,··· ,6 = −{w, r ∧w}+O(F 2
r ) (22)

since they satisfy
∂

∂n
ϕ̄mj = n · ∇ϕ̄mj = mj and

∂

∂z
ϕ̄mj = 0 (23)

on the hull for j = 1, 2, · · · , 6 and on the mean free surface for j = (1, 2, 6), respectively.

On the other side, the component Sij defined by (16) is converted into another form in Chen (2021)

{Sij}i=1,2,6 =

∫∫
H

{∇pS , r ∧∇pS}nj ds (24)

for j = (1, 2, 6). Introducing (8) for ϕ̄mj in (21) and (11) for pS in (24), we can show that

Sjj +RSjj = 0 (25)

for j = (1, 2, 6), i.e., in the horizontal directions (surge, sway and yaw). This cancellation of the speed-effect
restoring forces in the horizontal directions is expected to be consistent with physics. On the contrary, the neglect of
the component Sij should induce non-physical restoring forces represented by RSij and the accuracy of ship motions
could be affected, in particular, in the horizontal directions where no other restoring forces are present.

Even in the vertical directions (heave, roll and pitch) where the hydrostatic restoring forces are dominant, the
influence of speed-effect restoring forces Sij is significant. Indeed, the speed-effect restoring coefficients Sij are
computed based on the ship-shaped stream w and introduced in the added-mass coefficients (19) in place of (−RSij).
The comparison of A55 is depicted on the left of Figure 2, and that of pitch RAO on the right of the figure. It is
shown that the inclusion of Sij is critically important to predict ship motions with accuracy.
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Figure 2: Added-mass coefficient (left) and Pith RAO (right) including (solid) the speed-effect restoring forces Sij versus those
ignoring Sij (dashed), comparing with measurements of head-sea tests on Wigley IV hull at Fr = 0.3 in Journee (1992).
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