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1 INTRODUCTION
Recently, there has been significant progress in studying the blocking of flexural gravity waves. Das
et al. [1; 2] investigated the criteria for occurrences of flexural gravity wave blocking in homogeneous
and two-layer fluids. Boral et al. [3] studied the wave amplitudes of flexural waves in the vicinity of
the saddle as well as blocking points. Similarly, Barman et al. [4; 5] studied the wave scattering of
flexural gravity wave due to ice-crack and bottom undulation in the context of wave blocking, and
demonstrated the occurrence of removable discontinuities at the blocking points. In the present study,
the characteristics of flexural gravity waves are studied near the saddle point as well as the blocking
points for weakly varying compressive force in shallow water. The study reveals that the amplitude
of flexural gravity waves in the vicinity of the saddle and blocking points satisfy the hyper-Airy and
Airy differential equation, respectively, under the shallow water approximation. Using WKB theory,
the asymptotic solution of the hyper-Airy differential equation is obtained for matching the far-field
solution with the near field solution. Moreover, the simulation of time-dependent wave propagation is
demonstrated using the spectral method in the proximity of the saddle point.

2 FORMULATION OF MATHEMATICAL MODEL
In the present section, a mathematical model consisting of an infinitely extended floating elastic
plate is developed under the assumption of small amplitude structural response and shallow water
approximation. The interaction of gravity waves with the infinitely extended floating elastic plate/ice
sheet generates the flexural gravity waves. Besides, a two-dimensional Cartesian coordinate system is
assumed to represent the fluid domain with x-axis along the mean position of the plate covered surface
and y-axis acting vertically downward. In addition, the fluid is assumed to be inviscid, incompressible
and the flow is considered irrotational. Moreover, the plate is assumed to be thin, isotropic and
homogeneous. Thus, the equation of continuity in the case of long waves yields
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with Φ(x, t), ζ(x, t) and h being the velocity potential, floating plate deflection and water depth re-
spectively. The equation of motion associated with the long flexural gravity waves yields [5]
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where E is the Young’s modulus, I = d3/12(1−ν2) with d and ν being the plate thickness and Poisson
ratio respectively, N is the lateral compressive force, g is the acceleration due to gravity, ρ is the water
density, ρp is the plate density and Ps is the pressure acting upon the floating elastic plate/ice sheet.
Finally, combining Eqs. (1) and (2), the flexural gravity wave equation in shallow water is obtained
as
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where D = EI/ρg, Q = N/ρg and γp = ρpd/ρg.



3 DERIVATION AND ANALYSIS OF DISPERSION RELATION
Assuming the motion is simple harmonic in time t with angular frequency ω, the plate deflection is
written as

ζ(x, t) = Re
{
ζ0e

i(kx−ωt)
}
, (4)

with ζ0 being the known amplitude. Substituting Eq. (4) in Eq. (3), the dispersion relation is obtained
as

ω2 =
gk2h(Dk4 −Qk2 + 1)

1 + gk2hγp
. (5)

It is worth mentioning that γP � 1; thus, the inertia term is neglected in the subsequent discussion
as in [5]. Moreover, the phase and group velocities are derived in the form

c =
ω

k
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√
gh(Dk4 −Qk2 + 1); cg =

dω

dk
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gkh(3Dk4 − 2Qk + 1)

ω
. (6)

It is pertinent to mention that the phase velocity c vanishes for Q = Qc = 2
√
D m2 and k = kc =

(1/D)1/4 m−1, whilst the group velocity cg attains zero minimum for Q = Qcg =
√

3D m2 and k =
kcg = (1/3D)1/4 m−1. Noticeably, both cg and dcg/dk vanish for Qcg and kcg. Further, Qc and Qcg are
referred to as the buckling limit and threshold of blocking of compressive force respectively, whereas kc
and kcg are known as the critical wavenumber and saddle point respectively [1]. may be noted that the
vanishing of group velocity i.e., the existence of optima in the dispersion relation leading to the occur-
rences of flexural gravity wave blocking.
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Figure 1: Dispersion curves for different values of
Q with γP = 0, EI = 5× 108 Pa.

In Fig. 1, the dispersion curve is exhibited ver-
sus wavenumber for different values of compres-
sive force. Figure 1 demonstrates that no wave
blocking occurs for Q < Qcg, whilst for Q > Qcg
the dispersion curve possesses two optima which
correspond with the primary (higher wavenum-
ber) and secondary (lower wavenumber) block-
ing points. In addition, three propagating wave
modes exist for any frequency within the limits
of the blocking point.

4 WAVE AMPLITUDE NEAR SADDLE
AND BLOCKING POINTS
In the present section, emphasis is given for de-
termining the wave amplitude in the vicinity of
saddle as well as the blocking points for weakly
varying compressive force Q(x) in two different
subsections.

4.1 WAVE AMPLITUDE NEAR SADDLE POINT
In the vicinity of saddle point, the wave amplitude a(x, t) can be written as [3]

a(x, t) ≡ a(ε1/6x, ε1/6t), (7)

with ε� 1 being a small parameter. Thus, the deflection of floating elastic plate ζ(x, t) is written in
the form

ζ(x, t) = a(ε1/6x, ε1/6t)ei(kx−ωt). (8)



Next, we set k
4

= Dk4, Q = Q/
√
D and ω2 = (

√
D/gh)ω2 and the overbar is omitted in the subsequent

discussions. Consequently, substituting Eq. (8) in Eq. (3) and considering weakly varying compressive
force Q = Q(ε1/2x) , the Taylor series expansion of the compressive force Q about the saddle point,
say x = x0, yields

Q(ε1/2x) = Q0 + ε1/2(x− x0)Q′(x0) + ..., (9)

where Q0 = Q(x0). Using Eq. (9) in Eq. (3) and comparing different powers of ε as in [3], it is
obtained that
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...

It may be noted that Eq. (10) is the dispersion relation of the long flexural gravity wave. On the
other hand, the group velocity vanishes in the vicinity of the saddle point. Thus, Eq. (11) reveals
that wave amplitude a is independent of time t in the proximity of saddle point. Again, at the saddle
point both cg = 0 and dcg/dk = 0 [1], which ensures that Eq. (12) is trivially satisfied. Subsequently,
Eq. (13) provides the solution near the saddle point. Consequently, O(εm) for m > 1/2 is neglected.
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Figure 2: Generalised Airy function Aig(ψ)

Setting ξ = (x− x0)
{

Q′(x0)k
3

20k2 − 4Q0

}1/4

, Eq. (13)

can be rewritten as

d3a

dξ3
− iξa = 0, (14)

which is known as the hyper-Airy differential
equation. Using the WKB theory [3], the asymp-
totic solution of Eq. (14) for ξ → −∞ is obtained
as

a(ξ) ∼ (−ξ)−1/3e3e−πi/6γ(−ξ)4/3/4, (15)

where γ is the cube root of unity. In the present
study, the asymptotic solution is considered for
γ = −(1+i

√
3)/2 due to the fact that it is decay-

ing to the right and oscillatory in nature to the
left about the point x0. By solving Eq. (14) and
using Eq. (15), the wave amplitude a is obtained in the form
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)
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being the generalised Airy function, am being the amplitude at the point x = xm, where xm = x0−O(α)
with α being very small which is similar to the thickness of the boundary layer as in [3].



4.2 WAVE AMPLITUDE NEAR BLOCKING POINTS
It may be recalled from section 3 that the group velocity vanishes in the close neighbourhood of
primary as well as secondary blocking points. Thus, proceeding in a similar manner as in subsection
4.1 and considering Q = Q(ε1/3x), it can be easily derived that the wave amplitude near the blocking
points satisfies

d2a

dx2
− (x− x0)Q′(x0)k4

15k4 − 6Q(x0)k2 + 1
a = 0, (16)

which is the well-known Airy differential equation. The solution of Eq. (16) yields the amplitude a(x)
near the primary/secondary blocking point in terms of the Airy function Ai(x).

5 TIME-DOMAIN SIMULATION
In the present section, the time domain simulation of flexural gravity wave propagation in the vicinity
of the saddle point is demonstrated. Figure 3 demonstrates that no wave transmission occurs beyond
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Figure 3: Gaussian pulse near the saddle point with slowly varying Q(x) in red dashed line.

the saddle point (x = 80 m). Figure 3a reveals the Gaussian pulse for time t = 154 s. On the other
hand, Fig. 3b depicts that the incoming wave amplitude attains a higher value in the proximity of
the saddle point beyond which it decays, which is similar to the characteristics of generalized Airy
function as in Fig. 2. Figures 3c and 3d exhibit that wave reflection occurs from the saddle point [3].
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