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Simulation of water waves and taking into account the sea floor to estimate sea states are
important for the design of offshore structures. We propose a new high-order accurate pseudo-
spectral method for solving the incompressible Navier-Stokes equations with a free surface.
The work is motivated by the lack of high-order accurate free surface water wave models which
include viscous and rotational effects. The numerical scheme utilizes Fourier and Chebyshev
basis functions for the numerical discretization and enables exploiting the fast Fourier transform
(FFT) algorithm for efficiency reasons. A key feature is an explicit-implicit pressure-correction
method designed to work with general Runge-Kutta (RK) methods used for temporal integra-
tion that fulfills mass balance and a pressure-velocity coupling. Another key feature is the use
of a Fourier-continuation technique for solving numerical wave tank problems on finite (non-
periodic) domains. As a starting point towards establishing the solver, we provide benchmark
results to demonstrate accuracy and convergence using established cases used for potential flow
solvers. We present numerical case results for i) nonlinear stream function wave solutions and
ii) steep solitary wave reflection in a numerical wave tank in this abstract.

GOVERNING EQUATIONS
We consider the general - potentially 3D - incompressible flow with constant properties governed
by the Navier-Stokes equations on the following form:

∇ · v = 0, (1a)

∂tv+ v∇ · v = −1

ρ
∇p+ g+ ν∇2v, (1b)

with v being the velocity field [u, v, w]T , ∇ the gradient operator [ ∂
∂x
, ∂
∂y
, ∂
∂z
]T , ρ the density,

p the pressure, g the gravitational acceleration [0, 0,−g]T , and ν the kinematic viscosity. The
equations describes conservation of mass and momentum, respectively, and both must be ful-
filled to ensure accurate results. The total pressure p is split into its static and dynamic parts
p = pD + pS with pS = ρg(η − z), where η(x, y, t) is the water free surface. Atmospheric
pressure is ignored and the pressure on the free surface is assumed to be zero. The evolution of
the free surface elevation is governed by the kinematic boundary condition, which ensures that
free surface particles remain on the free surface

∂η

∂t
+ u|z=η

∂η

∂x
+ v|z=η

∂η

∂y
= w|z=η, (2)

where |z=η denotes evaluation at the free surface level. The constantly evolving free surface
elevation yields a time-dependent domain for which nonlinear waves requires re-discretization
of the computational domain. To avoid this the Navier-Stokes equations are solved in a time-
invariant σ-domain that is achieved by applying a modified version of the classical σ-transform

σ =
2z + 2h(x, y)− d(x, y, t)

d(x, y, t)
, −1 ≤ σ ≤ 1, (3)



where h(x, y) is the elevation of the seabed and d(x, y, t) = η(x, y, t)+h(x, y) is the total depth.
The current σ-transform differs from the usual as it ranges from -1 to 1 due to the support of
the Chebyshev basis The transformation limits the number of solvable problems as it does not
allow for overturning or breaking waves since this leads to spatial singularities. Applying the
chain rule, the Navier-Stokes equations is transformed to the σ-domain as,

∇σ · v = 0, (4a)

∂tv+ vσ∇ · v = −1

ρ
(∇σpD +∇pS) + g+ ν∇2

σv, (4b)

where the velocity in the σ-direction and the derivative operator is given as:

vσ = [u, v, wσ]
T , wσ =

∂σ

∂t
+ u

∂σ

∂x
+ v

∂σ

∂y
+ w

∂σ

∂z
, (5a)
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[
∂
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+

∂σ

∂x

∂

∂σ
,
∂

∂y
+

∂σ

∂y

∂

∂σ
,
∂σ

∂z

∂

∂σ

]T
. (5b)

The σ-derivatives are evaluated from (3) by using the chain rule,

∂σ

∂t
= −d−1

(
∂d

∂t
+ σ

∂d

∂t

)
, ∇σ = d−1 (2∇h−∇d− σ∇d) ,

∇2σ = d−1
(
2∇2h−∇2d− σ∇2d− 2∇σ∇d

)
,

∂σ

∂z
= 2d−1,

(6)

where the time derivative of the depth is evaluated at the free surface from the kinematic
boundary condition (2) and projected down into the domain.

NUMERICAL DISCRETIZATION
A method of lines approach is used to discretize the governing equation in time. The momentum
equation (4b) and the free surface equation (2) are advanced in time by employing an explicit-
implicit pressure-correction method using a general RK method from [1] (here for velocity)

v(k) =
k∑

l=1

αklv
(l−1) + βkl∆tf(v(l−1)), k = 1, 2, ..., s, (7)

with v(0) = vn, v(s) = vn+1 and f(·) being the σ-transformed momentum (4b). Conservation of
mass is ensured at each time step by applying a pressure-correction method originally proposed
by [2], where the pressure is determined such that the velocity field is divergence free. Continuity

needs to be satisfied at each RK-stage, hence the divergence ∇(k)
σ · v(k) at stage k must vanish.

Note that the derivative operator is also denoted with the stage index as it is time-dependent
on the discrete level due to the σ-transform. Let f̂(·) be the momentum equation without the
dynamic pressure and the divergence at stage k becomes

∇(k)
σ · v(k) = ∇(k)

σ ·
k∑

l=1

αklv
(l−1) + βkl∆t

[
f̂(v(l−1))− 1

ρ
∇(l−1)

σ p
(l−1)
D

]
. (8)

We set ∇(k)
σ · v(k) = 0 and by isolating the pressure, the velocity field at stage k becomes

divergence free by solving the Poisson type problem

∇(k)
σ · ∇(k−1)

σ p
(k−1)
D =

ρ

βkk∆t
∇(k)

σ · v̂(k), (9)
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Figure 1: Relative L2-error of the velocity u measured against a stream function solution for kh = 0.5, 2.0 and
2π with maximum theoretical steepness of 75%.

where the velocity without the pressure v̂(k) is given as:

v̂(k) =
k−1∑
l=1

αklv
(l−1) + βkl∆tf(v(l−1)) + αkkv

(k−1) + βkk∆tf̂(v(k−1)). (10)

The boundary value problem is solved with a zero Dirichlet pressure boundary condition at the
free surface and a no-slip Neumann condition at wall boundaries, where the latter is determined
in a similar fashion as the Poisson problem resulting in:

n · ∇(k−1)
σ p

(k−1)
D =

ρ

βkk∆t
n · v̂(k), (11)

with n being the normal vector. The velocity without pressure (10) can now be corrected with
the newly obtained pressure to determine the final divergence free velocity. The Poisson type
equation consists of mixed-stage derivative operators and it is necessary to advance the free
surface to stage k before the Poisson equation is set up. The presented results uses the classical
explicit fourth-order RK-scheme.

The governing equations are discretized in a 2D σ-domain using a pseudospectral method
based on Fourier modes in the horizontal direction evaluated at Nx equidistant nodes and
Chebyshev polynomials in the vertical σ-direction evaluated atNs+1 Chebyshev-Gauss-Lobatto
nodes. The Fourier basis is inherently periodic, hence enforcing boundary conditions are only
necessary at the free surface and the seabed. A collocation approach is used to represent the
free surface, the velocities, and the pressure, which are discretized in nodal space by global
Lagrange interpolation polynomials lj(xi) with the Cardinal property that lj(xi) = δij, where
δij is Kroneckers delta. The derivatives in the horizontal direction are evaluated discreetly in
modal space by FFT and the vertical derivatives are evaluated by fast Chebyshev transform
(FCT). Mixed derivatives are evaluated by repeated use of the FFT and FCT. These discrete
evaluations makes the computations of the derivatives scalable as they both have work effort
O(N logN). Nonlinear terms are evaluated at collocation points by direct products, that are
susceptible to aliasing, which can be damped through mild spectral filtering.

NONLINEAR ACCURACY
The accuracy of the nonlinear model is shown in Fig. 1 where the relative L2-error of the
bulk velocity u is shown. The error is computed for a 2D nonlinear stream function wave with
limiting steepness of 75% and dimensionless depth kh = 0.5, 2.0, and 2π. The test shows
spectral convergence and that more horizontal resolution is needed on shallow water and more
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Figure 2: Stream function wave for kh 2.0 with maximum theoretical steepness of 40% and ∆t = T/100.
Divergence for different resolution with constant Nx = 24 (left) and constant Ns=26 (middle), and a comparison
of the free surface elevation for Nx = 24 and Ns=26. (right)

vertical resolution is needed on deep water, which is as expected due to the decay of modal
coefficients for the stream function.

Stability of the model is highly dependent on the divergence which can be seen in Fig. 2
(left and middle) for a 2D nonlinear stream function wave propagating for 50 wave periods with
limiting steepness of 40% and kh = 2.0. The test hints that the vertical resolution is of great
importance for the stability but the magnitude of the divergence is governed by the horizontal
resolution. Fig. 2 (right) show the free surface elevation for the stable wave propagation test
where excellent agreement with the constant low divergence can be observed.
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Figure 3: Attachment (ηa), maximum
wave run up (η0) and detachment (ηd)
curves for reflection of a solitary wave.

The model’s ability to cope with nonlinear shallow-
water waves is tested by colliding two identical 2D solitary
waves, essentially replicating a solitary wave reflecting off
a vertical wall. The free surface elevation of the solitary
wave at attachment (ηa), maximum wave run up (η0), and
detachment (ηd) from the wall are shown in Fig. 3 with a
comparison to results from [3]. The maximum run up is
determined up to a/h = 0.6 as it was found by [4] that a
jet occurs for larger a/h, hence breaking the invertibility
of the σ-transform.

At the workshop we plan to show i) a spectral filter for
dealiasing of nonlinear simulations for improving model
robustness and ii) an extension of the wave tank used for
the reflecting solitary wave with a benchmark comparison
to experimental results of a submerged bar test [5].
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