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1 Introduction

Maruo’s formulation [1] for the wave drift force on bodies with forward speed (added resistance), requires
calculation of finite and semi-infinite integrals containing the Kochin function. With this abstract we intend to
highlight and discuss some computational challenges related to these integrals in further detail through several
two- and three-dimensional (2D, 3D) example calculations.

2 The formulation

According to Maruo’s formulation [1, 2] the added resistance Rw can be computed by
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in which ρ is the fluid density, K = ω2
0/g is the wave number and β is the heading angle, with ω0 the wave

frequency, and g the gravitational acceleration. The integration bounds are
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Here κ0 = g/U2 and τ = Uω/g, U as the forward speed of the body and ω as the encounter frequency. Note
that if τ > 1

4 then k̄3 = k̄4 = κ0τ , and the last two integrals are merged in to one semi-infinite integral in
[k̄2 ∞]. The Kochin function is defined by an integration over the body surface Sb
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where ∂/∂n denotes the derivative normal to the body surface, φB is the combined radiation and scattering

velocity potential and κ̄(m) = 1
g (ω +mU)

2
. In the context of the 2D strip theory, (2.2) can be expressed by
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where N denotes the normal vector to each 2D section Cx in the y− z plane, and L is length of the body. The
total 2D disturbance potential is ψB . Using the method of equivalent line source, Kashiwagi [2, 3] proposed
also an equivalent equation for the Kochin function inside his Enhanced Unified Theory. In the 2D strip theory,
this alternative equation takes the following form

H(m) =
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in which ψ is either the radiation (ν = ω2/g) or the scattering velocity potential (ν = K).

3 Calculations and Discussions

We believe there are two unsolved issues related to the computation of wave added resistance using (2.1), and
the 3D Kochin function (2.2) or its 2D equivalent (2.3). The first is evaluation of the semi-infinite integrals.
For many years, in order to avoid the associated computational difficulties, these integrals have either been
neglected completely (arguing that their contribution is negligible), or have been computed by assuming an
artificial and arbitrary submergence of the z- coordinate of the floating body (asserting that it is necessary for
convergence). Even if we assume that the added resistance can be calculated using only the middle integral in
(2.1), then we are faced with a second issue which is the poor comparison between Maruo’s far-field method and
the well-established near-field method for floating bodies, (the best comparison yet achieved in our calculations
is related to a floating spheroid [4]). In what follows we discuss these matters using 2D and 3D computations.

maaf@mek.dtu.dk
hbb@mek.dtu.dk


3.1 Alternative and Original form of the Kochin Function (2D)

To our best knowledge the semi-infinite integrals have never been treated completely, except by Prof. Kashiwagi
through the alternative form of the Kochin function (2.4) and the Enhanced Unified Theory (see for example
[2, 3]). In a recent paper [5] we have employed this alternative form inside our in-house strip-theory code which is
an implementation of the classical STF strip theory using the low-order BEM and the zero-speed Green function.
Note that Kashiwagi uses an elegant semi-analytical method to compute these integrals, but in our work we
truncate the integration where there is almost zero contribution to the final results. Using these computations,
we have illustrated the relative contributions of the semi-infinite integrals to the added resistance. An example
is shown in figure 1. In the plot the subscripts on H and the superscripts on Rw denote the contribution to
the corresponding integral in (2.1). The Froude number is given by Fr, B is the beam of the vessel, and A is
the wave amplitude. As can be seen, the semi-infinite integrals play an important role in computing the added
resistance, and should not be neglected. This fact has already been emphasized by Prof. Kashiwagi. It is also
important to note that for τ > 1/4 there is no finite integral in (2.1), and neglecting the third integral is in
fact equivalent to cutting-off the semi-infinite integral at k̄3 = k̄4. In addition we have conducted a convergence
study of the computations based on the original formulation (2.3) for the added resistance of the Wigley hull.
See figure 2. The computation for added resistance of a prismatic barge is also shown in figure 3. In order
to ensure accuracy in case of a highly oscillatory Kochin function for large m values, we employed a spectral
integration scheme for the integral along x. According to these computations the convergence of the added
resistance based on the original form (2.3) is achieved, however in neither of these cases are the converged
results anything close to the correct solutions based on the alternative form of the Kochin function. This is
also true if we consider only the middle integral in (2.1) for the added resistance, which has become common
practice in the literature. For the Wigley hull the converged results are unrealistically large. In the next section
we illustrate this issue further using 3D computations and only based on the original 3D form (2.2). The 3D
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Figure 1: (Left) The Kochin function related to three integrals in (2.1). (Right) Illustration of relative contri-
bution of the semi-infinite integrals to the added resistance of the DTC Container. Note the computations are
based on the alternative form of the Kochin function (2.4)
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Figure 2: First row: Illustration of relative contribution of the semi-infinite integrals to the added resistance
of the Wigley hull based on the original form of the Kochin function (2.3). Second row: Convergence of the
Kochin function in terms of number of 2D sections and number of panels (Nx, Np). Third row: The Kochin
function along the body for m = 12 and 25 in case of λ/L = 1.20.
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Figure 3: Illustration of relative contribution of the semi-infinite integrals to the added resistance of the barge,
L/B = 10 and L/T = 16 with T as the draft. Top: The computations based on the alternative form of the
Kochin function (2.4). Bottom: The computations based on the original form of the Kochin function (2.3).

computations are performed using the open-source solver OW3D-Seakeeping which is based on 4th order finite
difference-method. Note that these results are based on the Neumann-Kelvin linearization and for β = π

3.2 Floating Bodies (3D)

Two geometries are considered: the Wigley hull type I (free in heave and pitch), and the Modified Wigley
hull (free in surge, heave, pitch) as defined by [6]. For both hulls, a convergence study is conducted for the
added resistance based on the near-field formulation and Maruo’s far-filed method (2.1). See the first and the
second rows in figure 4. On the left side, the Kochin functions H1, H2, H3 corresponding to the peak value
of the added resistance are plotted. On the right side, convergence for the far-field added resistance (based
on only the middle integral) is illustrated. The numbers in the parentheses denote the total number of grid
points on the body, normalized by the number of grid points for the coarsest grid. We have not included the
contribution from the first and the third integral R1

w, R
3
w, as this leads to unrealistically large added resistances

similar to the 2D computations from the previous section. As the integral for the Kochin function (2.2) contains
oscillatory terms, in our computation we ensured that the integral bounds k̄2 and k̄3 are below the grid Nyquist
wave number π/la. Here la is the average grid spacing along the waterline. For the near-field method only the
final converged results are shown. Note also that for the Wigley I hull, we have improved our computational
accuracy compared with our previous results presented in 32th IWWWFB [7]. As can be seen from the results
in figure 4, the converged far-field results (based on only the middle integral) do not compare well with the
converged near-field solutions. Moreover it is seen that H1 and H3 corresponding to the semi-infinite integrals
are also converged.

3.3 Submerged Bodies (3D)

The significance of the semi-infinite integrals is extremely low in the case of submerged bodies. A well-known
example from the literature is the added resistance of the fixed submerged spheroid with L/B = 5 and the

submergence depth of d̂ = 0.75B. See the results in the third row of figure 4. The BEM solutions are according
to [8]. Note that we have included all three integrals from (2.1), even though this was not necessary as the
Kochin functions H1, H3 are almost zero over the corresponding integration ranges. Apparently this fact that
the semi-infinite integrals can be left out of the computation for a submerged body, has been generalized by
some researchers to the computations for floating bodies. As we have shown in the previous sections this is not
a correct generalization.

4 Conclusions

Using 2D strip-theory and 3D models, we have illustrated the convergence of the calculations for the wave added
resistance based on Maruo’s method (2.1)-(2.3). By this we have tried to highlight two unsolved problems related
to Maruo’s formulation and floating bodies. First, the inclusion of the semi-infinite integrals, and second the
fact that the added resistance is still predicted to be substantially higher than other reference solutions, even
when the semi-infinite integrals are ignored. With regard to the first issue, it is known that some researchers
use poor convergence as an excuse for introducing an arbitrary submergence of the z- coordinate in the original
formulation eκ̄(z−ε). By doing so they damp these high added resistance values, and can tune their models in
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Figure 4: 3D computations based on (2.2). Left: The Kochin function (H1, H2, H3) at the peak value of the
added resistance. Right: Added resistance considering only the middle integral R2

w. for the floating bodies, and
considering all three integrals R1

w +R2
w +R3

w for the submerged spheroid.

order to achieve good agreement with measurements. With regard to the second problem, [9] has attributed
the high added resistances to the fact that potential-flow models overpredict the body motions due to lack of
viscous damping. This is in spite of the fact that only the symmetric modes (surge-heave-pitch) are considered
in their work. Accordingly they achieve reasonable agreement with experimental data by introducing a damping
model to reduce the motion and accordingly the added resistance. Obviously this would have a direct effect
also on their near-field solutions, which has not been mentioned in that research. To conclude, we are left with
an open question of what is the actual computational problem (if not convergence) in evaluating the integrals
and the original forms of the Kochin function (2.2), (2.3) for floating geometries.
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